-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask.py
165 lines (129 loc) · 6.67 KB
/
task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import re
from datetime import datetime
import pandas as pd
import requests
_FORECAST_EXPRESSION = '_deluxe'
_MIN_PROFIT_PER_SHARE = 0.075
_SIDES = ('buy', 'sell')
_FTE_BASE_URL = 'https://projects.fivethirtyeight.com/2022-general-election-forecast-data/'
_CHAMBERS = dict(
names=['senate', 'governor'],
patterns=dict(
senate='Which party will win the ([A-Z]{2}) (Sen)ate race',
governor='Which party will win ([A-Z]{2}) (gov)ernor\'s race?',
),
filenames=dict(
senate='senate_state_toplines_2022.csv',
governor='governor_state_toplines_2022.csv',
),
)
def _get_pi_contracts(market: dict, contract: dict) -> dict:
contract_data = dict((f'm{market_field}', market[market_field]) for market_field in ('shortName', 'url'))
contract_data.update(dict((f'c{contract_field}', contract[contract_field]) for contract_field in (
'name', 'bestBuyYesCost', 'bestBuyNoCost', 'bestSellYesCost', 'bestSellNoCost')))
return contract_data
def _get_pi_markets(markets: dict) -> pd.DataFrame:
market_data = []
for market in markets['markets']:
market_data.extend(_get_pi_contracts(market, contract) for contract in market['contracts'])
return pd.DataFrame(market_data).drop_duplicates()
def get_pi_data() -> pd.DataFrame:
markets = requests.get('https://www.predictit.org/api/marketdata/all/').json()
return _get_pi_markets(markets)
def _filter_pi_data(pi_data: pd.DataFrame, chamber: str) -> pd.DataFrame:
pattern = _CHAMBERS['patterns'][chamber]
pi_data = pi_data.rename(columns=dict((i, i.replace('cbest', 'best')) for i in pi_data.columns))
shortname_with_pattern = pi_data.mshortName.apply(lambda x: re.search(pattern, x))
pi_data['state'] = shortname_with_pattern.apply(lambda x: x.group(1) if x else None)
pi_data['seat'] = shortname_with_pattern.apply(lambda x: '-'.join(x.groups()).upper() if x else None)
return pi_data
def _get_fte_data(chamber: str) -> pd.DataFrame:
filename = _CHAMBERS['filenames'][chamber]
fte = pd.read_csv(_FTE_BASE_URL + filename, usecols=['district', 'expression', 'winner_Dparty', 'winner_Rparty'])
fte = fte[fte.expression == _FORECAST_EXPRESSION].drop_duplicates(keep='first', subset='district')
fte['state'] = fte.district.apply(lambda x: x.split('-', 1)[0])
fte = fte.drop(columns=['expression', 'district'])
return fte
def merge_fte_and_pi(pi_data: pd.DataFrame, chamber: str) -> pd.DataFrame:
chamber = chamber.lower()
pi = _filter_pi_data(pi_data, chamber)
pi = pi[pi.state.notna()].copy()
fte = _get_fte_data(chamber)
_separate_by_party = lambda party: pi[pi.cname == party].drop(columns='cname')
pi = _separate_by_party('Democratic').merge(_separate_by_party('Republican'), on=[
'mshortName', 'murl', 'state', 'seat'], suffixes=('D', 'R'))
merged = pi.merge(fte, on='state').drop(columns=['state']).rename(columns=dict(
winner_Dparty='fteD', winner_Rparty='fteR'))
return merged
def add_profit_columns(merged: pd.DataFrame) -> None:
merged['profit_bestBuyYesCostD'] = merged.fteD - merged.bestBuyYesCostD
merged['profit_bestBuyNoCostR'] = merged.fteD - merged.bestBuyNoCostR
merged['profit_bestBuyYesCostR'] = merged.fteR - merged.bestBuyYesCostR
merged['profit_bestBuyNoCostD'] = merged.fteR - merged.bestBuyNoCostD
merged['profit_bestSellYesCostD'] = merged.bestSellYesCostD - merged.fteD
merged['profit_bestSellNoCostR'] = merged.bestSellNoCostR - merged.fteD
merged['profit_bestSellYesCostR'] = merged.bestSellYesCostR - merged.fteR
merged['profit_bestSellNoCostD'] = merged.bestSellNoCostD - merged.fteR
def add_action_columns(merged: pd.DataFrame, side: str) -> pd.DataFrame:
cost_columns = list(map(lambda x: x.format(side.title()), (
'best{}YesCostD', 'best{}NoCostR', 'best{}YesCostR', 'best{}NoCostD')))
merged = merged.reset_index(drop=True)
transposed = merged[[f'profit_{i}' for i in cost_columns]].transpose()
addnl = [{
'actionRec': re.search('profit_best(Buy|Sell)(Yes|No)Cost([DR])', transposed[i].idxmax()),
'actionProfit': transposed[i].max(),
} for i in transposed]
merged = merged.join(pd.DataFrame(addnl))
merged.actionRec = merged.actionRec.apply(lambda x: x.groups()).apply(
lambda x: '{} {} on the {}'.format(x[0], x[1], dict(D='Democrat', R='Republican')[x[2]]))
merged['actionSide'] = side
return merged
def create_fte_and_pi_comparison() -> pd.DataFrame:
pi_data = get_pi_data()
merged = pd.concat(merge_fte_and_pi(pi_data, chamber) for chamber in _CHAMBERS['names'])
add_profit_columns(merged)
merged = pd.concat(add_action_columns(merged, side) for side in _SIDES)
merged = merged[merged.actionProfit >= _MIN_PROFIT_PER_SHARE].copy()
merged.fteD = merged.fteD.round(2)
merged.fteR = merged.fteR.round(2)
merged.actionProfit = merged.actionProfit.round(2)
merged = pd.concat(
merged[merged.actionSide == side].sort_values('actionProfit', ascending=False) for side in _SIDES)
return merged
def create_html_page(merged: pd.DataFrame) -> None:
summary = merged.groupby('actionRec', as_index=False).agg(dict(murl='count', seat=', '.join)).sort_values(
by='murl', ascending=False)
forecast_exp_title = _FORECAST_EXPRESSION[1:].title()
market_item_template = open('templates/market_item.html').read()
market_item_costs_template = open('templates/market_item_costs.html').read()
summary_item_template = open('templates/summary_item.html').read()
items = [
market_item_template.format(
forecast_expression=forecast_exp_title,
costs=market_item_costs_template.format(actionSideTitle=i['actionSide'].title()).format(**i),
**i,
) for i in merged.to_dict('records')
]
items.insert(5, open('templates/notes_item.html').read().format(
forecast_expression=forecast_exp_title, min_profit_per_share=_MIN_PROFIT_PER_SHARE))
links_idx = 9
html = open('templates/page.html').read().format(
data0='\n'.join(items[:links_idx]),
data1='\n'.join(items[links_idx:]),
summary='\n'.join(summary_item_template.format(**i) for i in summary.to_dict('records')),
update_interval='hourly',
last_updated=datetime.now().strftime('%d %B %Y %H:%M'),
)
with open('index.html', 'w') as f:
f.write(html)
def create_csv(merged: pd.DataFrame) -> None:
for col in merged.columns:
if col.startswith('profit_'):
merged[col] = merged[col].round(2)
merged.to_csv('data/opportunities.csv', index=False)
def main():
merged = create_fte_and_pi_comparison()
create_html_page(merged)
create_csv(merged)
if __name__ == '__main__':
main()