-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathmanifest.py
1656 lines (1405 loc) · 60.1 KB
/
manifest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import enum
from collections import defaultdict
from dataclasses import dataclass, field
from itertools import chain, islice
from mashumaro.mixins.msgpack import DataClassMessagePackMixin
from multiprocessing.synchronize import Lock
from typing import (
DefaultDict,
Dict,
List,
Optional,
Union,
Mapping,
MutableMapping,
Any,
Set,
Tuple,
TypeVar,
Callable,
Generic,
AbstractSet,
ClassVar,
Iterable,
)
from typing_extensions import Protocol
from uuid import UUID
from dbt.contracts.graph.nodes import (
BaseNode,
Documentation,
Exposure,
GenericTestNode,
GraphMemberNode,
Group,
Macro,
ManifestNode,
Metric,
ModelNode,
DeferRelation,
ResultNode,
SavedQuery,
SemanticModel,
SourceDefinition,
UnpatchedSourceDefinition,
)
from dbt.contracts.graph.unparsed import SourcePatch, NodeVersion, UnparsedVersion
from dbt.contracts.graph.manifest_upgrade import upgrade_manifest_json
from dbt.contracts.files import SourceFile, SchemaSourceFile, FileHash, AnySourceFile
from dbt.contracts.util import (
BaseArtifactMetadata,
SourceKey,
ArtifactMixin,
schema_version,
get_artifact_schema_version,
)
from dbt.dataclass_schema import dbtClassMixin
from dbt.exceptions import (
CompilationError,
DuplicateResourceNameError,
DuplicateMacroInPackageError,
DuplicateMaterializationNameError,
AmbiguousResourceNameRefError,
)
from dbt.helper_types import PathSet
from dbt.events.functions import fire_event
from dbt.events.types import MergedFromState, UnpinnedRefNewVersionAvailable
from dbt.events.contextvars import get_node_info
from dbt.node_types import NodeType, AccessType
from dbt.flags import get_flags, MP_CONTEXT
from dbt import tracking
import dbt.utils
NodeEdgeMap = Dict[str, List[str]]
PackageName = str
DocName = str
RefName = str
UniqueID = str
def find_unique_id_for_package(storage, key, package: Optional[PackageName]):
if key not in storage:
return None
pkg_dct: Mapping[PackageName, UniqueID] = storage[key]
if package is None:
if not pkg_dct:
return None
else:
return next(iter(pkg_dct.values()))
elif package in pkg_dct:
return pkg_dct[package]
else:
return None
class DocLookup(dbtClassMixin):
def __init__(self, manifest: "Manifest") -> None:
self.storage: Dict[str, Dict[PackageName, UniqueID]] = {}
self.populate(manifest)
def get_unique_id(self, key, package: Optional[PackageName]):
return find_unique_id_for_package(self.storage, key, package)
def find(self, key, package: Optional[PackageName], manifest: "Manifest"):
unique_id = self.get_unique_id(key, package)
if unique_id is not None:
return self.perform_lookup(unique_id, manifest)
return None
def add_doc(self, doc: Documentation):
if doc.name not in self.storage:
self.storage[doc.name] = {}
self.storage[doc.name][doc.package_name] = doc.unique_id
def populate(self, manifest):
for doc in manifest.docs.values():
self.add_doc(doc)
def perform_lookup(self, unique_id: UniqueID, manifest) -> Documentation:
if unique_id not in manifest.docs:
raise dbt.exceptions.DbtInternalError(
f"Doc {unique_id} found in cache but not found in manifest"
)
return manifest.docs[unique_id]
class SourceLookup(dbtClassMixin):
def __init__(self, manifest: "Manifest") -> None:
self.storage: Dict[str, Dict[PackageName, UniqueID]] = {}
self.populate(manifest)
def get_unique_id(self, search_name, package: Optional[PackageName]):
return find_unique_id_for_package(self.storage, search_name, package)
def find(self, search_name, package: Optional[PackageName], manifest: "Manifest"):
unique_id = self.get_unique_id(search_name, package)
if unique_id is not None:
return self.perform_lookup(unique_id, manifest)
return None
def add_source(self, source: SourceDefinition):
if source.search_name not in self.storage:
self.storage[source.search_name] = {}
self.storage[source.search_name][source.package_name] = source.unique_id
def populate(self, manifest):
for source in manifest.sources.values():
if hasattr(source, "source_name"):
self.add_source(source)
def perform_lookup(self, unique_id: UniqueID, manifest: "Manifest") -> SourceDefinition:
if unique_id not in manifest.sources:
raise dbt.exceptions.DbtInternalError(
f"Source {unique_id} found in cache but not found in manifest"
)
return manifest.sources[unique_id]
class RefableLookup(dbtClassMixin):
# model, seed, snapshot
_lookup_types: ClassVar[set] = set(NodeType.refable())
_versioned_types: ClassVar[set] = set(NodeType.versioned())
def __init__(self, manifest: "Manifest") -> None:
self.storage: Dict[str, Dict[PackageName, UniqueID]] = {}
self.populate(manifest)
def get_unique_id(
self,
key: str,
package: Optional[PackageName],
version: Optional[NodeVersion],
node: Optional[GraphMemberNode] = None,
):
if version:
key = f"{key}.v{version}"
unique_ids = self._find_unique_ids_for_package(key, package)
if len(unique_ids) > 1:
raise AmbiguousResourceNameRefError(key, unique_ids, node)
else:
return unique_ids[0] if unique_ids else None
def find(
self,
key: str,
package: Optional[PackageName],
version: Optional[NodeVersion],
manifest: "Manifest",
source_node: Optional[GraphMemberNode] = None,
):
unique_id = self.get_unique_id(key, package, version, source_node)
if unique_id is not None:
node = self.perform_lookup(unique_id, manifest)
# If this is an unpinned ref (no 'version' arg was passed),
# AND this is a versioned node,
# AND this ref is being resolved at runtime -- get_node_info != {}
# Only ModelNodes can be versioned.
if (
isinstance(node, ModelNode)
and version is None
and node.is_versioned
and get_node_info()
):
# Check to see if newer versions are available, and log an "FYI" if so
max_version: UnparsedVersion = max(
[
UnparsedVersion(v.version)
for v in manifest.nodes.values()
if isinstance(v, ModelNode)
and v.name == node.name
and v.version is not None
]
)
assert node.latest_version is not None # for mypy, whenever i may find it
if max_version > UnparsedVersion(node.latest_version):
fire_event(
UnpinnedRefNewVersionAvailable(
node_info=get_node_info(),
ref_node_name=node.name,
ref_node_package=node.package_name,
ref_node_version=str(node.version),
ref_max_version=str(max_version.v),
)
)
return node
return None
def add_node(self, node: ManifestNode):
if node.resource_type in self._lookup_types:
if node.name not in self.storage:
self.storage[node.name] = {}
if node.is_versioned:
if node.search_name not in self.storage:
self.storage[node.search_name] = {}
self.storage[node.search_name][node.package_name] = node.unique_id
if node.is_latest_version: # type: ignore
self.storage[node.name][node.package_name] = node.unique_id
else:
self.storage[node.name][node.package_name] = node.unique_id
def populate(self, manifest):
for node in manifest.nodes.values():
self.add_node(node)
def perform_lookup(self, unique_id: UniqueID, manifest) -> ManifestNode:
if unique_id in manifest.nodes:
node = manifest.nodes[unique_id]
else:
raise dbt.exceptions.DbtInternalError(
f"Node {unique_id} found in cache but not found in manifest"
)
return node
def _find_unique_ids_for_package(self, key, package: Optional[PackageName]) -> List[str]:
if key not in self.storage:
return []
pkg_dct: Mapping[PackageName, UniqueID] = self.storage[key]
if package is None:
if not pkg_dct:
return []
else:
return list(pkg_dct.values())
elif package in pkg_dct:
return [pkg_dct[package]]
else:
return []
class MetricLookup(dbtClassMixin):
def __init__(self, manifest: "Manifest") -> None:
self.storage: Dict[str, Dict[PackageName, UniqueID]] = {}
self.populate(manifest)
def get_unique_id(self, search_name, package: Optional[PackageName]):
return find_unique_id_for_package(self.storage, search_name, package)
def find(self, search_name, package: Optional[PackageName], manifest: "Manifest"):
unique_id = self.get_unique_id(search_name, package)
if unique_id is not None:
return self.perform_lookup(unique_id, manifest)
return None
def add_metric(self, metric: Metric):
if metric.search_name not in self.storage:
self.storage[metric.search_name] = {}
self.storage[metric.search_name][metric.package_name] = metric.unique_id
def populate(self, manifest):
for metric in manifest.metrics.values():
if hasattr(metric, "name"):
self.add_metric(metric)
def perform_lookup(self, unique_id: UniqueID, manifest: "Manifest") -> Metric:
if unique_id not in manifest.metrics:
raise dbt.exceptions.DbtInternalError(
f"Metric {unique_id} found in cache but not found in manifest"
)
return manifest.metrics[unique_id]
class SavedQueryLookup(dbtClassMixin):
"""Lookup utility for finding SavedQuery nodes"""
def __init__(self, manifest: "Manifest") -> None:
self.storage: Dict[str, Dict[PackageName, UniqueID]] = {}
self.populate(manifest)
def get_unique_id(self, search_name, package: Optional[PackageName]):
return find_unique_id_for_package(self.storage, search_name, package)
def find(self, search_name, package: Optional[PackageName], manifest: "Manifest"):
unique_id = self.get_unique_id(search_name, package)
if unique_id is not None:
return self.perform_lookup(unique_id, manifest)
return None
def add_saved_query(self, saved_query: SavedQuery):
if saved_query.search_name not in self.storage:
self.storage[saved_query.search_name] = {}
self.storage[saved_query.search_name][saved_query.package_name] = saved_query.unique_id
def populate(self, manifest):
for saved_query in manifest.saved_queries.values():
if hasattr(saved_query, "name"):
self.add_saved_query(saved_query)
def perform_lookup(self, unique_id: UniqueID, manifest: "Manifest") -> SavedQuery:
if unique_id not in manifest.saved_queries:
raise dbt.exceptions.DbtInternalError(
f"SavedQUery {unique_id} found in cache but not found in manifest"
)
return manifest.saved_queries[unique_id]
class SemanticModelByMeasureLookup(dbtClassMixin):
"""Lookup utility for finding SemanticModel by measure
This is possible because measure names are supposed to be unique across
the semantic models in a manifest.
"""
def __init__(self, manifest: "Manifest") -> None:
self.storage: DefaultDict[str, Dict[PackageName, UniqueID]] = defaultdict(dict)
self.populate(manifest)
def get_unique_id(self, search_name: str, package: Optional[PackageName]):
return find_unique_id_for_package(self.storage, search_name, package)
def find(
self, search_name: str, package: Optional[PackageName], manifest: "Manifest"
) -> Optional[SemanticModel]:
"""Tries to find a SemanticModel based on a measure name"""
unique_id = self.get_unique_id(search_name, package)
if unique_id is not None:
return self.perform_lookup(unique_id, manifest)
return None
def add(self, semantic_model: SemanticModel):
"""Sets all measures for a SemanticModel as paths to the SemanticModel's `unique_id`"""
for measure in semantic_model.measures:
self.storage[measure.name][semantic_model.package_name] = semantic_model.unique_id
def populate(self, manifest: "Manifest"):
"""Populate storage with all the measure + package paths to the Manifest's SemanticModels"""
for semantic_model in manifest.semantic_models.values():
self.add(semantic_model=semantic_model)
for disabled in manifest.disabled.values():
for node in disabled:
if isinstance(node, SemanticModel):
self.add(semantic_model=node)
def perform_lookup(self, unique_id: UniqueID, manifest: "Manifest") -> SemanticModel:
"""Tries to get a SemanticModel from the Manifest"""
enabled_semantic_model: Optional[SemanticModel] = manifest.semantic_models.get(unique_id)
disabled_semantic_model: Optional[List] = manifest.disabled.get(unique_id)
if isinstance(enabled_semantic_model, SemanticModel):
return enabled_semantic_model
elif disabled_semantic_model is not None and isinstance(
disabled_semantic_model[0], SemanticModel
):
return disabled_semantic_model[0]
else:
raise dbt.exceptions.DbtInternalError(
f"Semantic model `{unique_id}` found in cache but not found in manifest"
)
# This handles both models/seeds/snapshots and sources/metrics/exposures/semantic_models
class DisabledLookup(dbtClassMixin):
def __init__(self, manifest: "Manifest") -> None:
self.storage: Dict[str, Dict[PackageName, List[Any]]] = {}
self.populate(manifest)
def populate(self, manifest):
for node in list(chain.from_iterable(manifest.disabled.values())):
self.add_node(node)
def add_node(self, node):
if node.search_name not in self.storage:
self.storage[node.search_name] = {}
if node.package_name not in self.storage[node.search_name]:
self.storage[node.search_name][node.package_name] = []
self.storage[node.search_name][node.package_name].append(node)
# This should return a list of disabled nodes. It's different from
# the other Lookup functions in that it returns full nodes, not just unique_ids
def find(
self, search_name, package: Optional[PackageName], version: Optional[NodeVersion] = None
):
if version:
search_name = f"{search_name}.v{version}"
if search_name not in self.storage:
return None
pkg_dct: Mapping[PackageName, List[Any]] = self.storage[search_name]
if package is None:
if not pkg_dct:
return None
else:
return next(iter(pkg_dct.values()))
elif package in pkg_dct:
return pkg_dct[package]
else:
return None
class AnalysisLookup(RefableLookup):
_lookup_types: ClassVar[set] = set([NodeType.Analysis])
_versioned_types: ClassVar[set] = set()
def _packages_to_search(
current_project: str,
node_package: str,
target_package: Optional[str] = None,
) -> List[Optional[str]]:
if target_package is not None:
return [target_package]
elif current_project == node_package:
return [current_project, None]
else:
return [current_project, node_package, None]
@dataclass
class ManifestMetadata(BaseArtifactMetadata):
"""Metadata for the manifest."""
dbt_schema_version: str = field(
default_factory=lambda: str(WritableManifest.dbt_schema_version)
)
project_name: Optional[str] = field(
default=None,
metadata={
"description": "Name of the root project",
},
)
project_id: Optional[str] = field(
default=None,
metadata={
"description": "A unique identifier for the project, hashed from the project name",
},
)
user_id: Optional[UUID] = field(
default=None,
metadata={
"description": "A unique identifier for the user",
},
)
send_anonymous_usage_stats: Optional[bool] = field(
default=None,
metadata=dict(
description=("Whether dbt is configured to send anonymous usage statistics")
),
)
adapter_type: Optional[str] = field(
default=None,
metadata=dict(description="The type name of the adapter"),
)
def __post_init__(self):
if tracking.active_user is None:
return
if self.user_id is None:
self.user_id = tracking.active_user.id
if self.send_anonymous_usage_stats is None:
self.send_anonymous_usage_stats = get_flags().SEND_ANONYMOUS_USAGE_STATS
@classmethod
def default(cls):
return cls(
dbt_schema_version=str(WritableManifest.dbt_schema_version),
)
def _sort_values(dct):
"""Given a dictionary, sort each value. This makes output deterministic,
which helps for tests.
"""
return {k: sorted(v) for k, v in dct.items()}
def build_node_edges(nodes: List[ManifestNode]):
"""Build the forward and backward edges on the given list of ManifestNodes
and return them as two separate dictionaries, each mapping unique IDs to
lists of edges.
"""
backward_edges: Dict[str, List[str]] = {}
# pre-populate the forward edge dict for simplicity
forward_edges: Dict[str, List[str]] = {n.unique_id: [] for n in nodes}
for node in nodes:
backward_edges[node.unique_id] = node.depends_on_nodes[:]
for unique_id in backward_edges[node.unique_id]:
if unique_id in forward_edges.keys():
forward_edges[unique_id].append(node.unique_id)
return _sort_values(forward_edges), _sort_values(backward_edges)
# Build a map of children of macros and generic tests
def build_macro_edges(nodes: List[Any]):
forward_edges: Dict[str, List[str]] = {
n.unique_id: [] for n in nodes if n.unique_id.startswith("macro") or n.depends_on_macros
}
for node in nodes:
for unique_id in node.depends_on_macros:
if unique_id in forward_edges.keys():
forward_edges[unique_id].append(node.unique_id)
return _sort_values(forward_edges)
def _deepcopy(value):
return value.from_dict(value.to_dict(omit_none=True))
class Locality(enum.IntEnum):
Core = 1
Imported = 2
Root = 3
@dataclass
class MacroCandidate:
locality: Locality
macro: Macro
def __eq__(self, other: object) -> bool:
if not isinstance(other, MacroCandidate):
return NotImplemented
return self.locality == other.locality
def __lt__(self, other: object) -> bool:
if not isinstance(other, MacroCandidate):
return NotImplemented
if self.locality < other.locality:
return True
if self.locality > other.locality:
return False
return False
@dataclass
class MaterializationCandidate(MacroCandidate):
# specificity describes where in the inheritance chain this materialization candidate is
# a specificity of 0 means a materialization defined by the current adapter
# the highest the specificity describes a default materialization. the value itself depends on
# how many adapters there are in the inheritance chain
specificity: int
@classmethod
def from_macro(cls, candidate: MacroCandidate, specificity: int) -> "MaterializationCandidate":
return cls(
locality=candidate.locality,
macro=candidate.macro,
specificity=specificity,
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, MaterializationCandidate):
return NotImplemented
equal = self.specificity == other.specificity and self.locality == other.locality
if equal:
raise DuplicateMaterializationNameError(self.macro, other)
return equal
def __lt__(self, other: object) -> bool:
if not isinstance(other, MaterializationCandidate):
return NotImplemented
if self.specificity > other.specificity:
return True
if self.specificity < other.specificity:
return False
if self.locality < other.locality:
return True
if self.locality > other.locality:
return False
return False
M = TypeVar("M", bound=MacroCandidate)
class CandidateList(List[M]):
def last(self) -> Optional[Macro]:
if not self:
return None
self.sort()
return self[-1].macro
def _get_locality(macro: Macro, root_project_name: str, internal_packages: Set[str]) -> Locality:
if macro.package_name == root_project_name:
return Locality.Root
elif macro.package_name in internal_packages:
return Locality.Core
else:
return Locality.Imported
class Searchable(Protocol):
resource_type: NodeType
package_name: str
@property
def search_name(self) -> str:
raise NotImplementedError("search_name not implemented")
D = TypeVar("D")
@dataclass
class Disabled(Generic[D]):
target: D
MaybeMetricNode = Optional[Union[Metric, Disabled[Metric]]]
MaybeSavedQueryNode = Optional[Union[SavedQuery, Disabled[SavedQuery]]]
MaybeDocumentation = Optional[Documentation]
MaybeParsedSource = Optional[
Union[
SourceDefinition,
Disabled[SourceDefinition],
]
]
MaybeNonSource = Optional[Union[ManifestNode, Disabled[ManifestNode]]]
T = TypeVar("T", bound=GraphMemberNode)
# This contains macro methods that are in both the Manifest
# and the MacroManifest
class MacroMethods:
# Just to make mypy happy. There must be a better way.
def __init__(self):
self.macros = []
self.metadata = {}
def find_macro_by_name(
self, name: str, root_project_name: str, package: Optional[str]
) -> Optional[Macro]:
"""Find a macro in the graph by its name and package name, or None for
any package. The root project name is used to determine priority:
- locally defined macros come first
- then imported macros
- then macros defined in the root project
"""
filter: Optional[Callable[[MacroCandidate], bool]] = None
if package is not None:
def filter(candidate: MacroCandidate) -> bool:
return package == candidate.macro.package_name
candidates: CandidateList = self._find_macros_by_name(
name=name,
root_project_name=root_project_name,
filter=filter,
)
return candidates.last()
def find_generate_macro_by_name(
self, component: str, root_project_name: str, imported_package: Optional[str] = None
) -> Optional[Macro]:
"""
The default `generate_X_name` macros are similar to regular ones, but only
includes imported packages when searching for a package.
- if package is not provided:
- if there is a `generate_{component}_name` macro in the root
project, return it
- return the `generate_{component}_name` macro from the 'dbt'
internal project
- if package is provided
- return the `generate_{component}_name` macro from the imported
package, if one exists
"""
def filter(candidate: MacroCandidate) -> bool:
if imported_package:
return (
candidate.locality == Locality.Imported
and imported_package == candidate.macro.package_name
)
else:
return candidate.locality != Locality.Imported
candidates: CandidateList = self._find_macros_by_name(
name=f"generate_{component}_name",
root_project_name=root_project_name,
filter=filter,
)
return candidates.last()
def _find_macros_by_name(
self,
name: str,
root_project_name: str,
filter: Optional[Callable[[MacroCandidate], bool]] = None,
) -> CandidateList:
"""Find macros by their name."""
# avoid an import cycle
from dbt.adapters.factory import get_adapter_package_names
candidates: CandidateList = CandidateList()
packages = set(get_adapter_package_names(self.metadata.adapter_type))
for unique_id, macro in self.macros.items():
if macro.name != name:
continue
candidate = MacroCandidate(
locality=_get_locality(macro, root_project_name, packages),
macro=macro,
)
if filter is None or filter(candidate):
candidates.append(candidate)
return candidates
@dataclass
class ParsingInfo:
static_analysis_parsed_path_count: int = 0
static_analysis_path_count: int = 0
@dataclass
class ManifestStateCheck(dbtClassMixin):
vars_hash: FileHash = field(default_factory=FileHash.empty)
project_env_vars_hash: FileHash = field(default_factory=FileHash.empty)
profile_env_vars_hash: FileHash = field(default_factory=FileHash.empty)
profile_hash: FileHash = field(default_factory=FileHash.empty)
project_hashes: MutableMapping[str, FileHash] = field(default_factory=dict)
@dataclass
class Manifest(MacroMethods, DataClassMessagePackMixin, dbtClassMixin):
"""The manifest for the full graph, after parsing and during compilation."""
# These attributes are both positional and by keyword. If an attribute
# is added it must all be added in the __reduce_ex__ method in the
# args tuple in the right position.
nodes: MutableMapping[str, ManifestNode] = field(default_factory=dict)
sources: MutableMapping[str, SourceDefinition] = field(default_factory=dict)
macros: MutableMapping[str, Macro] = field(default_factory=dict)
docs: MutableMapping[str, Documentation] = field(default_factory=dict)
exposures: MutableMapping[str, Exposure] = field(default_factory=dict)
metrics: MutableMapping[str, Metric] = field(default_factory=dict)
groups: MutableMapping[str, Group] = field(default_factory=dict)
selectors: MutableMapping[str, Any] = field(default_factory=dict)
files: MutableMapping[str, AnySourceFile] = field(default_factory=dict)
metadata: ManifestMetadata = field(default_factory=ManifestMetadata)
flat_graph: Dict[str, Any] = field(default_factory=dict)
state_check: ManifestStateCheck = field(default_factory=ManifestStateCheck)
source_patches: MutableMapping[SourceKey, SourcePatch] = field(default_factory=dict)
disabled: MutableMapping[str, List[GraphMemberNode]] = field(default_factory=dict)
env_vars: MutableMapping[str, str] = field(default_factory=dict)
semantic_models: MutableMapping[str, SemanticModel] = field(default_factory=dict)
saved_queries: MutableMapping[str, SavedQuery] = field(default_factory=dict)
_doc_lookup: Optional[DocLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_source_lookup: Optional[SourceLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_ref_lookup: Optional[RefableLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_metric_lookup: Optional[MetricLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_saved_query_lookup: Optional[SavedQueryLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_semantic_model_by_measure_lookup: Optional[SemanticModelByMeasureLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_disabled_lookup: Optional[DisabledLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_analysis_lookup: Optional[AnalysisLookup] = field(
default=None, metadata={"serialize": lambda x: None, "deserialize": lambda x: None}
)
_parsing_info: ParsingInfo = field(
default_factory=ParsingInfo,
metadata={"serialize": lambda x: None, "deserialize": lambda x: None},
)
_lock: Lock = field(
default_factory=MP_CONTEXT.Lock,
metadata={"serialize": lambda x: None, "deserialize": lambda x: None},
)
def __pre_serialize__(self):
# serialization won't work with anything except an empty source_patches because
# tuple keys are not supported, so ensure it's empty
self.source_patches = {}
return self
@classmethod
def __post_deserialize__(cls, obj):
obj._lock = MP_CONTEXT.Lock()
return obj
def build_flat_graph(self):
"""This attribute is used in context.common by each node, so we want to
only build it once and avoid any concurrency issues around it.
Make sure you don't call this until you're done with building your
manifest!
"""
self.flat_graph = {
"exposures": {k: v.to_dict(omit_none=False) for k, v in self.exposures.items()},
"groups": {k: v.to_dict(omit_none=False) for k, v in self.groups.items()},
"metrics": {k: v.to_dict(omit_none=False) for k, v in self.metrics.items()},
"nodes": {k: v.to_dict(omit_none=False) for k, v in self.nodes.items()},
"sources": {k: v.to_dict(omit_none=False) for k, v in self.sources.items()},
"semantic_models": {
k: v.to_dict(omit_none=False) for k, v in self.semantic_models.items()
},
"saved_queries": {
k: v.to_dict(omit_none=False) for k, v in self.saved_queries.items()
},
}
def build_disabled_by_file_id(self):
disabled_by_file_id = {}
for node_list in self.disabled.values():
for node in node_list:
disabled_by_file_id[node.file_id] = node
return disabled_by_file_id
def _get_parent_adapter_types(self, adapter_type: str) -> List[str]:
# This is duplicated logic from core/dbt/context/providers.py
# Ideally this would instead be incorporating actual dispatch logic
from dbt.adapters.factory import get_adapter_type_names
# order matters for dispatch:
# 1. current adapter
# 2. any parent adapters (dependencies)
# 3. 'default'
return get_adapter_type_names(adapter_type) + ["default"]
def _materialization_candidates_for(
self,
project_name: str,
materialization_name: str,
adapter_type: str,
specificity: int,
) -> CandidateList:
full_name = dbt.utils.get_materialization_macro_name(
materialization_name=materialization_name,
adapter_type=adapter_type,
with_prefix=False,
)
return CandidateList(
MaterializationCandidate.from_macro(m, specificity)
for m in self._find_macros_by_name(full_name, project_name)
)
def find_materialization_macro_by_name(
self, project_name: str, materialization_name: str, adapter_type: str
) -> Optional[Macro]:
candidates: CandidateList = CandidateList(
chain.from_iterable(
self._materialization_candidates_for(
project_name=project_name,
materialization_name=materialization_name,
adapter_type=atype,
specificity=specificity, # where in the inheritance chain this candidate is
)
for specificity, atype in enumerate(self._get_parent_adapter_types(adapter_type))
)
)
return candidates.last()
def get_resource_fqns(self) -> Mapping[str, PathSet]:
resource_fqns: Dict[str, Set[Tuple[str, ...]]] = {}
all_resources = chain(
self.exposures.values(),
self.nodes.values(),
self.sources.values(),
self.metrics.values(),
self.semantic_models.values(),
self.saved_queries.values(),
)
for resource in all_resources:
resource_type_plural = resource.resource_type.pluralize()
if resource_type_plural not in resource_fqns:
resource_fqns[resource_type_plural] = set()
resource_fqns[resource_type_plural].add(tuple(resource.fqn))
return resource_fqns
def get_used_schemas(self, resource_types=None):
return frozenset(
{
(node.database, node.schema)
for node in chain(self.nodes.values(), self.sources.values())
if not resource_types or node.resource_type in resource_types
}
)
def get_used_databases(self):
return frozenset(x.database for x in chain(self.nodes.values(), self.sources.values()))
def deepcopy(self):
copy = Manifest(
nodes={k: _deepcopy(v) for k, v in self.nodes.items()},
sources={k: _deepcopy(v) for k, v in self.sources.items()},
macros={k: _deepcopy(v) for k, v in self.macros.items()},
docs={k: _deepcopy(v) for k, v in self.docs.items()},
exposures={k: _deepcopy(v) for k, v in self.exposures.items()},
metrics={k: _deepcopy(v) for k, v in self.metrics.items()},
groups={k: _deepcopy(v) for k, v in self.groups.items()},
selectors={k: _deepcopy(v) for k, v in self.selectors.items()},
metadata=self.metadata,
disabled={k: _deepcopy(v) for k, v in self.disabled.items()},
files={k: _deepcopy(v) for k, v in self.files.items()},
state_check=_deepcopy(self.state_check),
semantic_models={k: _deepcopy(v) for k, v in self.semantic_models.items()},
saved_queries={k: _deepcopy(v) for k, v in self.saved_queries.items()},
)
copy.build_flat_graph()
return copy
def build_parent_and_child_maps(self):
edge_members = list(
chain(
self.nodes.values(),
self.sources.values(),
self.exposures.values(),
self.metrics.values(),
self.semantic_models.values(),
self.saved_queries.values(),
)
)
forward_edges, backward_edges = build_node_edges(edge_members)
self.child_map = forward_edges
self.parent_map = backward_edges
def build_macro_child_map(self):
edge_members = list(
chain(
self.nodes.values(),
self.macros.values(),
)
)
forward_edges = build_macro_edges(edge_members)
return forward_edges
def build_group_map(self):
groupable_nodes = list(
chain(
self.nodes.values(),
self.saved_queries.values(),
self.semantic_models.values(),
self.metrics.values(),
)