-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain_detector.py
265 lines (228 loc) · 9.9 KB
/
train_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import hydra
from omegaconf import DictConfig, OmegaConf
from hydra.core.hydra_config import HydraConfig
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from models.detection.detector import build_detector
from torch.utils.data import DataLoader, DistributedSampler
from torch.optim.lr_scheduler import MultiStepLR
from utils import misc
from datasets.detection import build_train_dataset
from datasets.detection import build_valid_dataset
import torch.distributed as dist
import torch.multiprocessing as mp
from engine.utils import get_rank
from engine.hooks import *
from engine.det_solver import Trainer, Valider
def build_optimizers_schedulers(model, config):
if hasattr(model.backbone, 'no_weight_decay'):
skip = model.backbone.no_weight_decay()
else:
skip = ['query_embed']
head = []
det_no_decay = []
backbone_decay = []
backbone_no_decay = []
sp_params = []
sp_names = getattr(config.optimizer, 'sp_names', [])
for name, param in model.named_parameters():
if ("backbone" not in name and param.requires_grad) and not any(ns in name for ns in sp_names):
if len(param.shape) == 1 or name.endswith(".bias") or name.split('.')[-1] in skip:
det_no_decay.append(param)
else:
head.append(param)
if "backbone" in name and param.requires_grad and not any(ns in name for ns in sp_names):
if len(param.shape) == 1 or name.endswith(".bias") or name.split('.')[-1] in skip:
backbone_no_decay.append(param)
else:
backbone_decay.append(param)
if param.requires_grad and any(ns in name for ns in sp_names):
sp_params.append(param)
param_dicts = [
{
"params": head
},
{
"params": det_no_decay,
"weight_decay": 0.,
"lr": config.optimizer.lr,
},
{
"params": backbone_no_decay,
"weight_decay": 0.,
"lr": config.optimizer.lr_backbone
},
{
"params": backbone_decay,
"lr": config.optimizer.lr_backbone
},
]
# print the total number of trainable params.
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('num of total trainable prams:' + str(n_parameters))
optimizers = [torch.optim.AdamW(param_dicts, lr=config.optimizer.lr, weight_decay=config.optimizer.weight_decay)]
lr_schedulers = [
MultiStepLR(optimizers[0], config.optimizer.lr_drop_epochs, verbose=True, gamma=config.optimizer.decay_rate)
]
if len(sp_params) > 0:
sp_optimizer = torch.optim.AdamW(sp_params,
weight_decay=config.optimizer.weight_decay,
lr=config.optimizer.sp_lr)
optimizers.append(sp_optimizer)
lr_schedulers.append(
MultiStepLR(sp_optimizer,
config.optimizer.sp_lr_drop_epochs,
verbose=True,
gamma=config.optimizer.decay_rate))
return optimizers, lr_schedulers
def main(gpu, config, overrides):
# gpu: the rank of gpu in the node
rank = config.exp.rank * config.exp.ngpus_per_node + gpu
proj_dir = os.path.join(os.environ['HOME'], 'workspace/ecaptioner')
if gpu == 0:
script_path = os.path.join(proj_dir, config.exp.script)
os.system(f"rsync -av {script_path} run_{config.exp.rank}.sh")
with open(os.path.join(proj_dir, config.exp.git_file), 'r') as f:
git_info = f.read()
with open(f'./run_{config.exp.rank}.sh', 'a') as f:
f.write(f'{git_info}')
os.system(f"rm {os.path.join(proj_dir, config.exp.git_file)}")
torch.distributed.init_process_group(backend='nccl',
init_method='env://',
rank=rank,
world_size=config.exp.world_size)
print(f"Initialize: {rank}/{dist.get_world_size()}.")
device = "cuda"
torch.cuda.set_device(gpu)
# fix the seed for reproducibility
seed = config.exp.seed + get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# create model
print("create model")
model, criterion, postprocessors = build_detector(config)
model.to(device)
criterion.to(device)
print("create dist model")
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu], find_unused_parameters=True)
model_without_ddp = model.module
optimizers, schedulers = build_optimizers_schedulers(model_without_ddp, config)
start_epoch = 0
if config.exp.checkpoint != "" and os.path.exists(config.exp.checkpoint):
checkpoint = torch.load(config.exp.checkpoint, map_location=device)
def create_new_dict(d):
from collections import OrderedDict
new_d = OrderedDict()
for k, v in d.items():
if 'query_embed' in k and 'query_embed' in config.optimizer.sp_names:
v = v[:config.model.det_module.num_queries]
new_d[k] = v
return new_d
missing, unexpected = model_without_ddp.load_state_dict(
create_new_dict(checkpoint['model']),
strict=False,
)
if len(missing) > 0 and rank == 0:
print('Missing Keys: {}'.format(len(missing)))
if len(unexpected) > 0 and rank == 0:
print('Unexpected Keys: {}'.format(len(unexpected)))
if getattr(config.exp, 'resume', False):
start_epoch = checkpoint['epoch'] + 1
if 'optimizer' in checkpoint and not isinstance(optimizers, list):
optimizers.load_state_dict(checkpoint['optimizer'])
print(f"loading from the checkpoint: {config.exp.checkpoint}.")
print(f"start at epoch: {start_epoch}.")
# for datasets, dataloaders
train_dataset = build_train_dataset(config.dataset)
valid_datasets = build_valid_dataset(config.dataset_val)
print("create dataloaders")
train_sampler = DistributedSampler(train_dataset)
valid_samplers = {k: DistributedSampler(v, shuffle=False) for k, v in valid_datasets.items()}
batch_train_sampler = torch.utils.data.BatchSampler(train_sampler, config.optimizer.batch_size, drop_last=True)
train_loader = DataLoader(train_dataset,
batch_sampler=batch_train_sampler,
prefetch_factor=2,
collate_fn=misc.collate_fn,
num_workers=config.optimizer.num_workers,
pin_memory=True)
valid_loaders = {
k: DataLoader(dataset,
config.optimizer.batch_size,
sampler=valid_samplers[k],
prefetch_factor=2,
drop_last=False,
collate_fn=misc.collate_fn,
num_workers=config.optimizer.num_workers,
pin_memory=True) for k, dataset in valid_datasets.items()
}
print("create trainers")
trainer = Trainer(model,
train_loader,
optimizers,
criterion,
device=device,
max_norm=config.optimizer.clip_max_norm,
eval_every_iters=config.exp.eval_every_iters)
validers = {
data_name: Valider(
model,
valid_loaders[data_name],
optimizers,
criterion,
postprocessors,
device=device,
rank=rank,
data_name=data_name,
) for data_name in valid_loaders
}
excluded_keys = ["bbox"]
for name in ["loss_bbox", "loss_giou", "loss_ce"]:
for idx in range(6):
excluded_keys.append(f"{name}_{idx}")
train_hooks = [ProgressHook(name='train', excluded_keys=excluded_keys)]
valid_hooks = {data_name: [ProgressHook(name=data_name, excluded_keys=excluded_keys)] for data_name in validers}
if rank == 0:
train_hooks += [
TensorboardHook(name='train', save_dir='./', log_every_step=100),
TextLoggingHook(name='train', save_dir='./'),
CheckpointHook(save_every_epochs=getattr(config.exp, 'save_every_epochs', 1),
save_every_iters=-1,
save_dir='./',
args=config),
]
for data_name in valid_hooks:
valid_hooks[data_name] += [
TensorboardHook(name=data_name, save_dir='./', log_every_step=100),
TextLoggingHook(name=data_name, save_dir='./'),
]
trainer.set_validers(validers)
trainer.register_hooks(train_hooks)
for data_name, valider in validers.items():
valider.register_hooks(valid_hooks[data_name])
if rank == 0:
trainer.hooks[trainer.hook_name2idx["TextLoggingHook"]].write(OmegaConf.to_yaml(config))
if getattr(config.exp, 'eval', False):
for data_name, valider in validers.items():
print(f"Evaluate {data_name}...")
valider.run_epoch(0)
return
print("start training..")
for lr_scheduler in schedulers:
lr_scheduler.step()
for epoch in range(start_epoch, config.optimizer.num_epochs):
train_sampler.set_epoch(epoch)
trainer.run_epoch(epoch)
for data_name, valider in validers.items():
print(f"Evaluate {data_name:<10} at epoch {epoch} ...")
valider.run_epoch(epoch)
for lr_scheduler in schedulers:
lr_scheduler.step()
@hydra.main(config_path="configs/detection", config_name="train_config")
def run_main(config: DictConfig) -> None:
overrides = HydraConfig.get().overrides.task
mp.spawn(main, nprocs=config.exp.ngpus_per_node, args=(config, overrides))
if __name__ == "__main__":
run_main()