-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy patheval_caption.py
71 lines (55 loc) · 2 KB
/
eval_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import hydra
import random
import numpy as np
from omegaconf import DictConfig
from datasets.caption.field import TextField
from datasets.caption.coco import build_coco_dataloaders
from models.caption import Transformer
from models.caption.detector import build_detector
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from engine.caption_engine import *
def main(gpu, config):
# dist init
torch.backends.cudnn.enabled = False
dist.init_process_group('nccl', 'env://', rank=0, world_size=1)
torch.manual_seed(config.exp.seed)
np.random.seed(config.exp.seed)
random.seed(config.exp.seed)
device = torch.device(f"cuda:{gpu}")
torch.cuda.set_device(gpu)
# extract reg features + initial grid features
detector = build_detector(config).to(device)
model = Transformer(detector=detector, config=config)
model.load_state_dict(torch.load(config.exp.checkpoint)['state_dict'], strict=False)
model = model.to(device)
model = DDP(model, device_ids=[gpu], find_unused_parameters=True, broadcast_buffers=False)
dataloaders, samplers = build_coco_dataloaders(config, mode='finetune', device=device)
text_field = TextField(vocab_path=config.dataset.vocab_path)
split = config.split
print(f"Evaluating on split: {split}")
scores = evaluate_metrics(
model,
optimizers=None,
dataloader=dataloaders[f'{split}_dict'],
text_field=text_field,
epoch=-1,
split=f'{split}',
config=config,
train_res=[],
writer=None,
best_cider=None,
which='ft_sc',
scheduler=None,
log_and_save=False,
)
@hydra.main(config_path="configs/caption", config_name="coco_config")
def run_main(config: DictConfig) -> None:
mp.spawn(main, nprocs=1, args=(config,))
if __name__ == "__main__":
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "6688"
run_main()