-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathprepareDataset.py
121 lines (108 loc) · 5 KB
/
prepareDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
""" prepareDataset.py
Step 1 in the training: we convert the (human-readable) CSV
with training data into number matrices with the appropriate
shape, ready for the actual training of the classifier.
"""
import sys
import pickle
import json
import pandas as pd
import numpy as np
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# in
datasetInputFile = 'training/dataset/spam-dataset.csv'
# out
trainingDumpFile = 'training/prepared_dataset/spam_training_data.pickle'
if __name__ == '__main__':
# just for additional output, not relevant for the process itself
verbose = '-v' in sys.argv[1:]
def _reindent(t, n): return '\n'.join('%s%s' % (' ' * n if ix > 0 else '', l) for ix, l in enumerate(t.split('\n')))
print('PREPARE DATASET')
# Reading the input file and preparing legend info
print(' Reading ... ', end ='')
df = pd.read_csv(datasetInputFile)
labels = df['label'].tolist()
texts = df['text'].tolist()
#
labelLegend = {'ham': 0, 'spam': 1}
labelLegendInverted = {'%i' % v: k for k,v in labelLegend.items()}
labelsAsInt = [labelLegend[x] for x in labels]
print('done')
if verbose:
print(' texts[350] = "%s ..."' % texts[350][:45])
print(' labelLegend = %s' % str(labelLegend))
print(' labelLegendInverted = %s' % str(labelLegendInverted))
print(' labels = %s +...' % str(labels[:5]))
print(' labelsAsInt = %s +...' % str(labelsAsInt[:5]))
# Tokenization of texts
print(' Tokenizing ... ', end ='')
MAX_NUM_WORDS = 280
tokenizer = Tokenizer(num_words=MAX_NUM_WORDS)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
print('done')
if verbose:
print(' tokenizer.word_index = %s +...' % str(dict(list(tokenizer.word_index.items())[:5])))
inverseWordIndex = {v: k for k, v in tokenizer.word_index.items()}
print(' inverseWordIndex = %s +...' % str(dict(list(inverseWordIndex.items())[:5])))
print(' sequences[350] = %s' % str(sequences[350]))
print(' [')
print(' inverseWordIndex[i]')
print(' for i in sequences[350]')
print(' ] = %s' % (
[inverseWordIndex[i] for i in sequences[350]]
))
print(' texts[350] = "%s"' % texts[350])
# Padding of sequences
print(' Padding ... ', end ='')
MAX_SEQ_LENGTH = 300
X = pad_sequences(sequences, maxlen=MAX_SEQ_LENGTH)
print('done')
if verbose:
print(' [len(s) for s in sequences] = %s + ...' % str([len(s) for s in sequences[:6]]))
print(' len(sequences) = %s' % str(len(sequences)))
print(' X.shape = %s' % str(X.shape))
print(' type(X) = %s' % str(type(X)))
print(' X[350] = ... + %s' % str(X[350][285:]))
# Switch to categorical form for labels
print(' Casting as categorical ... ', end ='')
labelsAsIntArray = np.asarray(labelsAsInt)
y = to_categorical(labelsAsIntArray)
print('done')
if verbose:
print(' labelsAsIntArray.shape = %s' % str(labelsAsIntArray.shape))
print(' y.shape = %s' % str(y.shape))
print(' y[:5] = %s' % _reindent(str(y[:5]),43))
print(' labels[:5] = %s' % str(labels[:5]))
print(' labelLegend = %s' % str(labelLegend))
print(' Splitting dataset ... ', end ='')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
print('done')
if verbose:
print(' X_train.shape = %s' % str(X_train.shape))
print(' X_test.shape = %s' % str(X_test.shape))
print(' y_train.shape = %s' % str(y_train.shape))
print(' y_test.shape = %s' % str(y_test.shape))
# Respectively: (5043, 300) (2485, 300) (5043, 2) (2485, 2)
print(' Saving ... ', end ='')
trainingData = {
'X_train': X_train,
'X_test': X_test,
'y_train': y_train,
'y_test': y_test,
'max_words': MAX_NUM_WORDS,
'max_seq_length': MAX_SEQ_LENGTH,
'label_legend': labelLegend,
'label_legend_inverted': labelLegendInverted,
'tokenizer': tokenizer,
}
with open(trainingDumpFile, 'wb') as f:
pickle.dump(trainingData, f)
print('done')
if verbose:
print(' Saved keys = %s' % '/'.join(sorted(trainingData.keys())))
#
print('FINISHED')