Skip to content

Latest commit

 

History

History
459 lines (361 loc) · 15.5 KB

README.md

File metadata and controls

459 lines (361 loc) · 15.5 KB

Fifa 21 (Game) Data @EaSports

Img

Acknowledgement

Data has been scraped from the publicly available website

About

FIFA 21 is an association football simulation video game published by Electronic Arts as part of the FIFA series.[1] It is the 28th installment in the FIFA series, and was released on 9 October 2020 for Microsoft Windows, Nintendo Switch, PlayStation 4 and Xbox One. Enhanced versions for the PlayStation 5 and Xbox Series X and Series S were released on 3 December 2020, in addition to a version for Stadia in March 2021.

About the data

Data includes lastest edition FIFA 2021 players attributes like Age, Nationality, Overall, Potential, Club, Value, Wage, Preferred Foot, International Reputation, Weak Foot, Skill Moves, Work Rate, Position, Jersey Number, Joined, Loaned From, Contract Valid Until, Height, Weight, LS, ST, RS, LW, LF, CF, RF, RW, LAM, CAM, RAM, LM, LCM, CM, RCM, RM, LWB, LDM, CDM, RDM, RWB, LB, LCB, CB, RCB, RB, Crossing, Finishing, Heading, Accuracy, ShortPassing, Volleys, Dribbling, Curve, FKAccuracy, LongPassing, BallControl, Acceleration, SprintSpeed, Agility, Reactions, Balance, ShotPower, Jumping, Stamina, Strength, LongShots, Aggression, Interceptions, Positioning, Vision, Penalties, Composure, Marking, StandingTackle, SlidingTackle, GKDiving, GKHandling, GKKicking, GKPositioning, GKReflexes, and Release Clause.

Code And Workings

Imports

library("dplyr")
library("tidyverse")
library("plotly")
library("maps")
library("ggcorrplot")
library("infer")

Data Loading, Cleaning and Data Preparation

Click to expand!
f21 <- read.csv("players_21.csv")

f21 <- read.csv("players_21.csv", na.strings = c("", "NA"))
f21[,2]
f21 <- f21[,-2]
f21 <- f21[,c(-22,-23)]
f21 <- f21[,-23]
f21 <- f21[,-25]
f21 <- f21[,-41]
f21 <- f21 %>% select(-gk_diving,-gk_handling,-gk_kicking,-gk_reflexes,-gk_speed,-gk_positioning)
f21 <- f21 %>% select(-defending_marking)
f21 <- f21 %>% select(-sofifa_id)

f21 <- f21 %>% rename(Crossing=attacking_crossing        , Finishing=attacking_finishing ,      
                HeadingAccuracy=attacking_heading_accuracy, ShortPassing=attacking_short_passing  ,  Volleys=attacking_volleys  ,       
                Dribbling=skill_dribbling         ,   Curve=skill_curve     ,           FkAccuracy=skill_fk_accuracy    ,     
                LongPassing=skill_long_passing    ,     Ball_Control=skill_ball_control     ,    Acceleration=movement_acceleration   ,  
                SprintSpeed=movement_sprint_speed   ,   Agility=movement_agility    ,       Reactions=movement_reactions    ,    
                Balance=movement_balance    ,       ShotPower=power_shot_power    ,       Jumping=power_jumping   ,          
                Stamina=power_stamina   ,           Strength=power_strength   ,          LongShot=power_long_shots    ,      
                Aggression=mentality_aggression   ,    Interception=mentality_interceptions   , Positioning=mentality_positioning   ,  
                Vision=mentality_vision   ,        Penalty=mentality_penalties    ,    Composure=mentality_composure    ,   
                StandingTackle=defending_standing_tackle  ,    SlidingTackle=defending_sliding_tackle   ,   GK_Diving=goalkeeping_diving    ,    
                GK_Handling=goalkeeping_handling   ,    GK_Kicking=goalkeeping_kicking    ,    GK_Positioning=goalkeeping_positioning   ,
                GK_Reflexes=goalkeeping_reflexes)

Nationality wise some selection

Click to expand!
France <- subset(f21,f21$nationality=="France")
India <- subset(f21,f21$nationality=="India")
Argentina <- subset(f21,f21$nationality=="Argentina")
Portugal <- subset(f21,f21$nationality=="Portugal")
Brazil <- subset(f21,f21$nationality=="Brazil")
Spain <- subset(f21,f21$nationality=="Spain")
Germany <- subset(f21,f21$nationality=="Germany")

Club wise some selection

Click to expand!
Barcelona <- subset(f21,f21$club_name=="FC Barcelona")
BMunich <- subset(f21,f21$club_name=="FC Bayern M?nchen")
Juventus <- subset(f21,f21$club_name=="Juventus")

League wise some selection

Click to expand!
La_Liga <- subset(f21,f21$league_name=="Spain Primera Division")
Serie_A <- subset(f21,f21$league_name=="Italian Serie A")
Bundesliga <- subset(f21,f21$league_name=="German 1. Bundesliga")
Ligue_1 <- subset(f21,f21$league_name=="French Ligue 1")
EPL <- subset(f21,f21$league_name=="English Premier League")

Distribution and the Average Age of The Players in each League

Click to expand!
summ <- df %>% 
  group_by(league_name) %>% 
  summarise(Age = mean(age))



options(repr.plot.width = 12, repr.plot.height = 8)

ggplot()+
  geom_histogram(df, mapping = aes(age, fill = league_name))+
  geom_vline(summ, mapping = aes(xintercept = Age), color = "red", size = 1.5)+
  geom_text(summ, mapping = aes(x = Age+3, y = 65, label = round(Age,digits = 2)))+
  facet_wrap(league_name~.)+
  theme_minimal()+
  theme(legend.position = "bottom")+
  labs(y = "Frequency", title = "Distribution & The Average Age of The Players in each League", 
       caption = "@EA Sports - FIFA 21")

Img2

World map and Players available in Fifa 21 Game

Click to expand!
options(repr.plot.width = 12, repr.plot.height = 8)

world_map <- map_data("world")

numofplayers <- world_map %>% 
  mutate(region = as.character(region)) %>% 
  left_join((f21 %>% mutate(nationality = as.character(nationality),
                           nationality = if_else(nationality %in% "England", 
                                                 "UK", nationality)) %>%
               count(nationality, name = "Number of Player") %>%
               rename(region = nationality) %>%
               mutate(region = as.character(region))), by = "region")


ggplot(numofplayers, aes(long, lat, group = group))+
  geom_polygon(aes(fill = factor(`Number of Player`) ), color = "grey", show.legend = F)+
  scale_fill_viridis_d(option = "D")+
  theme_void()+
  labs(fill = "Number of Player",
       title = "Players enlisted from countries")

Img3

Players from Barcelona(As Was in Fifa21)

Click to expand!
options(repr.plot.width = 12, repr.plot.height = 8)

Barcelona %>% 
  select(short_name, overall, potential) %>% 
  arrange(-overall) %>% 
  head(15) %>% 
  gather(variable, Exp, -short_name) %>% 
  ggplot(aes(short_name, Exp, fill = variable))+
  geom_col(position = "dodge")+
  geom_text(aes(label = Exp),position = position_dodge(width = 0.9), vjust = -0.5)+
  scale_fill_manual(values = c("#004D98", "#A50044"))+
  theme_minimal()+
  theme(legend.position = "bottom")+
  labs(fill = NULL, x = NULL, title = "Barcelona")+
  theme(axis.text.x = element_text(face="bold",angle = 90, vjust = 0.5, hjust=1))

img4

Players from Brazil

Click to expand!
options(repr.plot.width = 12, repr.plot.height = 8)

Brazil %>% 
  select(short_name, overall, potential) %>% 
  arrange(-overall) %>% 
  head(15) %>% 
  gather(variable, Exp, -short_name) %>% 
  ggplot(aes(short_name, Exp, fill = variable))+
  geom_col(position = "dodge")+
  geom_text(aes(label = Exp),position = position_dodge(width = 0.9), vjust = -0.5)+
  scale_fill_manual(values = c("#009c3b", "#ffdf00"))+
  theme_minimal()+
  theme(legend.position = "bottom")+
  labs(fill = NULL, x = NULL, title = "Brazil")+
  theme(axis.text.x = element_text(face="bold",angle = 90, vjust = 0.5, hjust=1))

img5

Messi Vs Ronaldo (Before the transfer of Messi)

Click to expand!
options(repr.plot.width = 15,repr.plot.height = 8)


ggplot(player,aes(Skill,Exp,fill=Name))+ geom_col(position = "fill")+
  coord_flip()+ scale_fill_manual(limits=c("L. Messi,FC Barcelona","Cristiano Ronaldo,Juventus"),values = c("#ff0000","#75AADB"))+theme_minimal()+
  geom_hline(yintercept = 0.5,color="yellow",size=0.5,linetype=2)+
  theme(legend.position = "top",axis.text.y = element_text(face = "bold"),axis.text.x = element_blank())+
  labs(title = "Ronaldo vs Messi")
 

img6

La liga Native and foreign player

Click to expand!
L_NAT <- La_Liga %>% mutate(Nationality=as.character(nationality),
                   Nationality = if_else(nationality %in% "Spain","Native","Foreigner"))
                   
ggplot(L_NAT)+geom_bar(aes(x=Nationality,fill= Nationality),show.legend = F)+
  facet_wrap(club_name~.)+labs(title = "La Liga Native and Foreigner player")

img7

EPL Native and foreign player

Click to expand!
EPL_NAT <- EPL %>% mutate(Nationality=as.character(nationality),
                            Nationality = if_else(nationality %in% "England","Native","Foreigner"))

ggplot(EPL_NAT)+geom_bar(aes(x=Nationality,fill= Nationality),show.legend = F)+
  facet_wrap(club_name~.)+labs(title = "EPL Native and Foreigner player")

img8

Bundesliga Native and foreign player

Click to expand!
Bund_NAT <- Bundesliga %>% mutate(Nationality=as.character(nationality),
                            Nationality = if_else(nationality %in% "Germany","Native","Foreigner"))

ggplot(Bund_NAT)+geom_bar(aes(x=Nationality,fill= Nationality),show.legend = F)+
  facet_wrap(club_name~.,nrow = 3)+labs(title = "Bundesliga Native and Foreigner player")

img9

Distribution of players in the whole Fifa data

Click to expand!
options(repr.plot.width = 15,repr.plot.height = 8)


f21 %>% drop_na(player_positionsb)%>%
  ggplot()+geom_bar(aes(x=player_positionsb,fill=player_positionsb),show.legend = F)+
  labs(title = "Player position distribution in the World")

img10

Distribution in some top leagues

Click to expand!
options(repr.plot.width = 15,repr.plot.height = 8)


df %>% drop_na(player_positionsb)%>%
  ggplot()+geom_bar(aes(y=reorder(player_positionsb,player_positionsb, function(x) tapply(x,x,length)),fill=player_positionsb),show.legend = F)+
  facet_wrap(league_name~.,strip.position = "top")+
  labs(title="League wise Player position distribution")+xlab("Count")+ylab("Positions")

img11

Top 20

Forwards

Click to expand!
subset(fpos,Pos=="Forward") %>% arrange(desc(overall))%>%head(20)%>%
  ggplot(aes(x=overall,y=reorder(short_name,overall)))+geom_col(aes(fill=short_name),show.legend = F)+
  labs(x="Overall",y="Name",title = "Top 20 Forwards in the World")

img12

Wingers

Click to expand!
subset(fpos,Pos=="Winger") %>% arrange(desc(overall))%>%head(20)%>%
  ggplot(aes(x=overall,y=reorder(short_name,overall)))+geom_col(aes(fill=short_name),show.legend = F)+
  labs(x="Overall",y="Name",title = "Top 20 Wingers in the World")

img13

Midfielders

Click to expand!
subset(fpos,Pos=="Midfielder") %>% arrange(desc(overall))%>%head(20)%>%
  ggplot(aes(x=overall,y=reorder(short_name,overall)))+geom_col(aes(fill=short_name),show.legend = F)+
  labs(x="Overall",y="Name",title = "Top 20 Midfielders in the World")

img14

Defenders

Click to expand!
subset(fpos,Pos=="Defender") %>% arrange(desc(overall))%>%head(20)%>%
  ggplot(aes(x=overall,y=reorder(short_name,overall)))+geom_col(aes(fill=short_name),show.legend = F)+
  labs(x="Overall",y="Name",title = "Top 20 Defenders in the World")

img15

Full-Backs

Click to expand!
subset(fpos,Pos=="Full Back") %>% arrange(desc(overall))%>%head(20)%>%
  ggplot(aes(x=overall,y=reorder(short_name,overall)))+geom_col(aes(fill=short_name),show.legend = F)+
  labs(x="Overall",y="Name",title = "Top 20 Full Backs in the World")

img16

Goal Keepers

Click to expand!
subset(fpos,Pos=="Goal Keeper") %>% arrange(desc(overall))%>%head(20)%>%
  ggplot(aes(x=overall,y=reorder(short_name,overall)))+geom_col(aes(fill=short_name),show.legend = F)+
  labs(x="Overall",y="Name",title = "Top 20 Goal Keepers in the World")

img17

Most Powerful Clubs

Click to expand!
fpos %>%
  group_by(club_name,Pos) %>%
  summarise(mean=mean(overall)) %>%
  ungroup() %>% 
  filter(club_name %in% powerful$club_name) %>%
  ggplot(aes(reorder(club_name,mean),mean,fill= Pos))+
  geom_col(position = "fill")+
  geom_text(aes(label = round(mean,digits = 2)),position = position_fill(0.5),size=3.5)+
  coord_flip()+
  theme_minimal()+
  theme(legend.position = "top",axis.text.y = element_text(face = "bold"),axis.text.x = element_blank())+
  labs(x="",y="",title = "Top 20 powerful clubs with their position class")

img18

Wonder Kids

Click to expand!
fpos %>% filter(age<20, potential>72) %>%
  arrange(-potential) %>%
  group_by(age)%>%
  do(head(.,10)) %>%
  ggplot(aes(reorder(paste0(paste(short_name,player_positionsb, sep = ", "),"(",club_name,
                            ")"),potential),potential,fill=as.factor(age)))+
  geom_col(show.legend = F)+
  coord_flip()+
  facet_wrap(age~.,scales = "free")+
  labs(x="",y="Potential",title = "Age-wise Wonder-Kids",subtitle = "Amongst them some might become star")

img19

Most Expensive team possible(Using the given Data)

Click to expand!
d2 <- data.frame(   x=c(0, 0, 16.5, 100, 100,83.5), 
                    xend=c(16.5,16.5, 16.5, 83.5,83.5,83.5),
                    y=rep(c(13.68, 61.32, 13.68),2), 
                    yend=rep(c(13.68,61.32,61.32),2))

pp <- data.frame(   x=c(0,16.5,16.5,25,25,50,50,75,75,87.5),
                    y=c(37.5,13.68,61.32,0,75,18.75,56.25,0,75,37.5),
                    name=c("J. Oblak"," V. van Dijk","A. Laporte",
                           "T. Alexander-Arnold","A. Robertson",
                           "T. Kroos","F. de Jong",
                           "M. Salah","Neymar Jr",
                           "K. Mbapp?"))
p<- ggplot(dfpos)+
  xlim(0,100)+ylim(0,75)+
  geom_vline(xintercept = c(0,50,100), color="white") + 
  geom_segment(data = d2,aes(x=x, xend=xend, y=y,yend=yend), color="white") +
  geom_point(aes(x=50,y=75/2), size=2, color="white") +
  geom_point(data=pp,aes(x=x,y=y), size=7, color="orange")+
  geom_text(data=pp,aes(x=x,y=y,label = name),size=5)+
  theme(panel.background = element_rect(fill = "darkgreen"),
        panel.grid = element_line(colour = "darkgreen"))+
  labs(title = "Most Expensive team possible in Fifa 21",subtitle = "With most recent player valuation")+
  xlab("")+ylab("")
p

img20