-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtest_results_psd_prw.py
352 lines (304 loc) · 12.2 KB
/
test_results_psd_prw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import cv2
import os
from scipy.io import loadmat
import os.path as osp
import numpy as np
import json
from PIL import Image
import pickle
import re
import sys
#from numba import jit
from sklearn.metrics import average_precision_score
from sklearn.preprocessing import normalize
from iou_utils import get_max_iou
def compute_iou(a, b):
x1 = max(a[0], b[0])
y1 = max(a[1], b[1])
x2 = min(a[2], b[2])
y2 = min(a[3], b[3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
union = (a[2] - a[0]) * (a[3] - a[1]) + (b[2] - b[0]) * (b[3] - b[1]) - inter
return inter * 1.0 / union
def set_box_pid(boxes, box, pids, pid):
for i in range(boxes.shape[0]):
if np.all(boxes[i] == box):
pids[i] = pid
return
print("Person: %s, box: %s cannot find in images." % (pid, box))
def image_path_at(data_path, image_index, i):
image_path = osp.join(data_path, image_index[i])
assert osp.isfile(image_path), "Path does not exist: %s" % image_path
return image_path
def load_image_index(root_dir, db_name):
"""Load the image indexes for training / testing."""
# Test images
test = loadmat(osp.join(root_dir, "annotation", "pool.mat"))
test = test["pool"].squeeze()
test = [str(a[0]) for a in test]
if db_name == "psdb_test":
return test
# All images
all_imgs = loadmat(osp.join(root_dir, "annotation", "Images.mat"))
all_imgs = all_imgs["Img"].squeeze()
all_imgs = [str(a[0][0]) for a in all_imgs]
# Training images = all images - test images
train = list(set(all_imgs) - set(test))
train.sort()
return train
def _get_cam_id(im_name):
match = re.search('c\d', im_name).group().replace('c', '')
return int(match)
def load_probes(root):
query_info = osp.join(root, 'query_info.txt')
with open(query_info, 'r') as f:
raw = f.readlines()
probes = []
for line in raw:
linelist = line.split(' ')
pid = int(linelist[0])
x, y, w, h = float(linelist[1]), float(
linelist[2]), float(linelist[3]), float(linelist[4])
roi = np.array([x, y, x + w, y + h]).astype(np.int32)
roi = np.clip(roi, 0, None) # several coordinates are negative
im_name = linelist[5][:-1] + '.jpg'
probes.append({'im_name': im_name,
'boxes': roi[np.newaxis, :],
# Useless. Can be set to any value.
'gt_pids': np.array([pid]),
'flipped': False,
'cam_id': _get_cam_id(im_name)
})
return probes
def gt_roidbs(root):
imgs = loadmat(
osp.join(root, 'frame_test.mat'))['img_index_test']
imgs = [img[0][0] + '.jpg' for img in imgs]
gt_roidb = []
for im_name in imgs:
anno_path = osp.join(root, 'annotations', im_name)
anno = loadmat(anno_path)
box_key = 'box_new'
if box_key not in anno.keys():
box_key = 'anno_file'
if box_key not in anno.keys():
box_key = 'anno_previous'
rois = anno[box_key][:, 1:]
ids = anno[box_key][:, 0]
rois = np.clip(rois, 0, None) # several coordinates are negative
assert len(rois) == len(ids)
rois[:, 2:] += rois[:, :2]
# num_objs = len(rois)
# overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
# overlaps[:, 1] = 1.0
# overlaps = csr_matrix(overlaps)
gt_roidb.append({
'im_name': im_name,
'boxes': rois.astype(np.int32),
'gt_pids': ids.astype(np.int32),
'flipped': False,
'cam_id': _get_cam_id(im_name)
# 'gt_overlaps': overlaps
})
return gt_roidb
# @jit(forceobj=True)
def main(det_thresh=0.05, gallery_size=-1, ignore_cam_id=True, input_path=None):
#results_path = '/raid/ljp/code/chao_mmdetection/jobs/dcn_base_focal/'
results_path = '/home/jx1/yy1/mmdetection/work_dirs/' + input_path
# thresh = 0.2
data_root='/home/jx1/yy1/data/PRW-v16.04.20/'
probe_set = load_probes(data_root)
gallery_set = gt_roidbs(data_root)
name_id = dict()
for i, gallery in enumerate(gallery_set):
name = gallery['im_name']
name_id[name] = i
# print(name_id)
with open(os.path.join(results_path, 'results_1000.pkl'), 'rb') as fid:
all_dets = pickle.load(fid)
# print(len(all_dets))
all_dets1 = all_dets[0]
all_dets2 = all_dets[1]
print(len(all_dets1), len(all_dets2))
gallery_det1, gallery_feat1 = [], []
gallery_det2, gallery_feat2 = [], []
gallery_det3, gallery_feat3 = [], []
for det1, det2 in zip(all_dets1, all_dets2):
gallery_det1.append(det1[0][:, :5])
feat1 = normalize(det1[0][:, 5:], axis=1)
# print('feat1', feat1.shape)
gallery_feat1.append(feat1)
gallery_det2.append(det2[:, :5])
feat2 = normalize(det2[:, 5:], axis=1)
# print('feat2', feat2.shape)
gallery_feat2.append(feat2)
gallery_det3 = gallery_det1
gallery_feat3.append(np.concatenate((feat1, feat2), axis=1))
probe_feat1 = []
probe_feat2 = []
probe_feat3 = []
for probe in probe_set:
name = probe['im_name']
query_gt_box = probe['boxes'][0]
id = name_id[name]
det1 = gallery_det1[id]
feat1 = gallery_feat1[id]
iou, iou_max, nmax = get_max_iou(det1, query_gt_box)
if iou_max < 0.1:
print("not detected", name, iou_max)
feat1 = feat1[nmax]
probe_feat1.append(feat1)
feat3 = gallery_feat3[id]
feat3 = feat3[nmax]
probe_feat3.append(feat3)
det2 = gallery_det2[id]
feat2 = gallery_feat2[id]
iou, iou_max, nmax = get_max_iou(det2, query_gt_box)
if iou_max < 0.1:
print("not detected", name, iou_max)
feat2 = feat2[nmax]
probe_feat2.append(feat2)
# gallery_det, gallery_feat = [], []
# for det in all_dets:
# # det[0] = det[0][det[0][:, 4]>thresh]
# gallery_det.append(det[:, :5])
# # if det[0].shape[0] > 0:
# # feat = normalize(det[0][:, 5:], axis=1)
# # else:
# # feat = det[0][:, 5:]
# feat = normalize(det[:, 5:], axis=1)
# gallery_feat.append(feat)
all_gallery_det = [gallery_det1, gallery_det2, gallery_det3]
all_gallery_feat = [gallery_feat1, gallery_feat2, gallery_feat3]
all_probe_feat = [probe_feat1, probe_feat2, probe_feat3]
# all_gallery_det = [gallery_det1, gallery_det2]
# all_gallery_feat = [gallery_feat1, gallery_feat2]
# all_probe_feat = [probe_feat1, probe_feat2]
for gallery_det, gallery_feat, probe_feat in zip(all_gallery_det, all_gallery_feat, all_probe_feat):
search_performance_calc(gallery_set, probe_set, gallery_det, gallery_feat, probe_feat, det_thresh, gallery_size, ignore_cam_id)
# @jit(forceobj=True)
def search_performance_calc(gallery_set, probe_set,
gallery_det, gallery_feat, probe_feat,
det_thresh=0.5, gallery_size=-1, ignore_cam_id=True):
assert len(gallery_set) == len(gallery_det)
assert len(gallery_set) == len(gallery_feat)
assert len(probe_set) == len(probe_feat)
gt_roidb = gallery_set
name_to_det_feat = {}
for gt, det, feat in zip(gt_roidb, gallery_det, gallery_feat):
name = gt['im_name']
pids = gt['gt_pids']
cam_id = gt['cam_id']
scores = det[:, 4].ravel()
inds = np.where(scores >= det_thresh)[0]
if len(inds) > 0:
name_to_det_feat[name] = (det[inds], feat[inds], pids, cam_id)
aps = []
accs = []
topk = [1, 5, 10]
# ret = {'image_root': gallery_set.data_path, 'results': []}
for i in range(len(probe_set)):
y_true, y_score = [], []
imgs, rois = [], []
count_gt, count_tp = 0, 0
feat_p = probe_feat[i].ravel()
probe_imname = probe_set[i]['im_name']
probe_roi = probe_set[i]['boxes']
probe_pid = probe_set[i]['gt_pids']
probe_cam = probe_set[i]['cam_id']
# Find all occurence of this probe
gallery_imgs = []
for x in gt_roidb:
if probe_pid in x['gt_pids'] and x['im_name'] != probe_imname:
gallery_imgs.append(x)
probe_gts = {}
for item in gallery_imgs:
probe_gts[item['im_name']] = \
item['boxes'][item['gt_pids'] == probe_pid]
# Construct gallery set for this probe
if ignore_cam_id:
gallery_imgs = []
for x in gt_roidb:
if x['im_name'] != probe_imname:
gallery_imgs.append(x)
else:
gallery_imgs = []
for x in gt_roidb:
if x['im_name'] != probe_imname and x['cam_id'] != probe_cam:
gallery_imgs.append(x)
# # 1. Go through all gallery samples
# for item in testset.targets_db:
# Gothrough the selected gallery
for item in gallery_imgs:
gallery_imname = item['im_name']
# some contain the probe (gt not empty), some not
count_gt += (gallery_imname in probe_gts)
# compute distance between probe and gallery dets
if gallery_imname not in name_to_det_feat:
continue
det, feat_g, _, _ = name_to_det_feat[gallery_imname]
# get L2-normalized feature matrix NxD
assert feat_g.size == np.prod(feat_g.shape[:2])
feat_g = feat_g.reshape(feat_g.shape[:2])
# compute cosine similarities
sim = feat_g.dot(feat_p).ravel()
# assign label for each det
label = np.zeros(len(sim), dtype=np.int32)
if gallery_imname in probe_gts:
gt = probe_gts[gallery_imname].ravel()
w, h = gt[2] - gt[0], gt[3] - gt[1]
iou_thresh = min(0.5, (w * h * 1.0) /
((w + 10) * (h + 10)))
#iou_thresh = min(0.3, (w * h * 1.0) /
# ((w + 10) * (h + 10)))
inds = np.argsort(sim)[::-1]
sim = sim[inds]
det = det[inds]
# only set the first matched det as true positive
for j, roi in enumerate(det[:, :4]):
if compute_iou(roi, gt) >= iou_thresh:
label[j] = 1
count_tp += 1
break
y_true.extend(list(label))
y_score.extend(list(sim))
imgs.extend([gallery_imname] * len(sim))
rois.extend(list(det))
# 2. Compute AP for this probe (need to scale by recall rate)
y_score = np.asarray(y_score)
y_true = np.asarray(y_true)
assert count_tp <= count_gt
recall_rate = count_tp * 1.0 / count_gt
ap = 0 if count_tp == 0 else \
average_precision_score(y_true, y_score) * recall_rate
aps.append(ap)
inds = np.argsort(y_score)[::-1]
y_score = y_score[inds]
y_true = y_true[inds]
accs.append([min(1, sum(y_true[:k])) for k in topk])
# # 4. Save result for JSON dump
# new_entry = {'probe_img': str(probe_imname),
# 'probe_roi': map(float, list(probe_roi.squeeze())),
# 'probe_gt': probe_gts,
# 'gallery': []}
# # only save top-10 predictions
# for k in range(10):
# new_entry['gallery'].append({
# 'img': str(imgs[inds[k]]),
# 'roi': map(float, list(rois[inds[k]])),
# 'score': float(y_score[k]),
# 'correct': int(y_true[k]),
# })
# ret['results'].append(new_entry)
print('search ranking:')
mAP = np.mean(aps)
print(' mAP = {:.2%}'.format(mAP))
accs = np.mean(accs, axis=0)
for i, k in enumerate(topk):
print(' top-{:2d} = {:.2%}'.format(k, accs[i]))
if __name__ == "__main__":
# for t in [0.05, 0.15, 0.25, 0.3, 0.35, 0.4]:
# print('---------')
# print(t)
# main(det_thresh=t)
main(det_thresh=0.15, input_path=sys.argv[1])