-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·270 lines (231 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/python3
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
import json
import tensorflow as tf
import time
import argparse
from collections import namedtuple
from copy import deepcopy
from data_helper.read_data import read_babi
from data_helper.data_utils import WordTable
from expert.dmn import DMN as EXPERT_DMN
from expert.seq2seq import Seq2Seq as EXPERT_Seq2Seq
from expert.ren import REN as EXPERT_REN
from learner.dmn import DMN as LEARNER_DMN
from learner.seq2seq import Seq2Seq as LEARNER_Seq2Seq
from learner.ren import REN as LEARNER_REN
from lm.rnnlm import RNNLM as LM_RNNLM
from lm.lm_helper import train_lm, test_lm
from baseline import run_baseline
from experiments import run_experiments
## accessible model ##
MODEL = {'expert_dmn': EXPERT_DMN,
'expert_seq2seq': EXPERT_Seq2Seq,
'expert_ren': EXPERT_REN,
'learner_dmn': LEARNER_DMN,
'learner_seq2seq': LEARNER_Seq2Seq,
'lm_RNNLM': LM_RNNLM,
'learner_ren': LEARNER_REN}
def load_params_dict(filename):
with open(filename, 'r') as file:
params_dict = json.load(file)
return params_dict
def train_normal(model, params, expert_params, lm_params, words, train, val):
main_model = model(words, params, expert_params, lm_params)
main_model.pre_train(train, val)
main_model.save_params()
def test_normal(model, params, expert_params, lm_params, words, test):
main_model = model(words, params, expert_params, lm_params)
main_model.decode(test, sys.stdout, sys.stdin, all=False)
main_model.eval(test, name='Test')
## arguments parser ##
parser = argparse.ArgumentParser(description='Expert-Learner dmn and ren')
# Action and target and arch
parser.add_argument('action', choices=['train', 'test', 'rl', 'baseline', 'experiments_rl', 'experiments_nonrl'])
parser.add_argument('target', choices=['expert', 'learner', 'lm'])
parser.add_argument('arch', choices=['dmn', 'seq2seq', 'ren', 'RNNLM'])
# directory
parser.add_argument('--expert_dir', default='')
parser.add_argument('--load_dir', default='')
parser.add_argument('--lm_dir', default='')
# training options
parser.add_argument('--task', nargs='+', default=['1'], type=str, choices=[str(i) for i in range(1, 21)]+['all'])
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--num_epochs', default=256, type=int)
parser.add_argument('--learning_rate', default=0.002, type=float)
parser.add_argument('--rl_learning_rate', default=0.0001, type=float)
parser.add_argument('--val_ratio', default=0.1, type=float)
parser.add_argument('--acc_period', default=10, type=int)
parser.add_argument('--val_period', default=40, type=int)
parser.add_argument('--gpu_fraction', default=0.5, type=float)
# dmn params
parser.add_argument('--dmn_memory_step', default=3, type=int)
parser.add_argument('--dmn_memory_update', default='relu')
parser.add_argument('--dmn_embedding_size', default=80, type=int)
parser.add_argument('--dmn_hidden_size', default=80, type=int)
parser.add_argument('--dmn_weight_decay', default=0.001, type=float)
parser.add_argument('--dmn_keep_prob', default=1., type=float)
parser.add_argument('--dmn_batch_norm', dest='dmn_batch_norm', action='store_true')
parser.add_argument('--no_dmn_batch_norm', dest='dmn_batch_norm', action='store_false')
parser.set_defaults(dmn_batch_norm=True)
# seq2seq params
parser.add_argument('--seq2seq_hidden_size', default=150, type=int)
parser.add_argument('--seq2seq_weight_decay', default=0.001, type=float)
# ren params
parser.add_argument('--ren_embedding_size', default=100, type=int)
parser.add_argument('--ren_num_blocks', default=20, type=int)
# RNNLM params
parser.add_argument('--rnnlm_layers', default=2, type=int)
parser.add_argument('--rnnlm_hidden_size', default=650, type=int)
parser.add_argument('--rnnlm_keep_prob', default=0.5, type=float)
parser.add_argument('--lm_num_epoch', default=35, type=int)
parser.add_argument('--lm_ptb_path', default='./ptb', type=str)
parser.add_argument('--lm_num_steps', default=20, type=int)
parser.add_argument('--lm_batch_size', default=20, type=int)
parser.add_argument('--lm_vocab_size', default=20, type=int)
parser.add_argument('--lm_period', default=1, type=int)
parser.add_argument('--lm_val_period', default=1, type=int)
args = parser.parse_args()
## main function ##
def main(_):
## import main model ##
main_model_name = '{}_{}'.format(args.target, args.arch)
if main_model_name in MODEL:
MainModel = MODEL[main_model_name]
else:
raise Exception("Unsupported target-arch pair!")
## create save dir ##
if args.action == 'baseline':
save_dir = os.path.join('save_baseline', '{}_{}'.format(args.arch, '_'.join(args.task)))
if not os.path.exists(save_dir+'/record'):
os.makedirs(save_dir+'/record', exist_ok=True)
elif args.action == 'experiments_rl':
save_dir = os.path.join('save_experiments_rl', '{}_{}'.format(args.arch, '_'.join(args.task)))
elif args.action == 'experiments_nonrl':
save_dir = os.path.join('save_experiments_nonrl', '{}_{}'.format(args.arch, '_'.join(args.task)))
elif args.target == 'lm':
save_dir = os.path.join('save', '{}_{}'.format(args.target, args.arch))
else:
save_dir = os.path.join('save', '{}_{}_{}'.format(args.target, args.arch, '_'.join(args.task)))
args.save_dir = save_dir
## data set ##
if 'all' in args.task:
args.task = list(range(1, 21))
else:
args.task = [int(i) for i in args.task]
train, test, words, args.story_size, args.sentence_size, args.question_size = read_babi(args.task, args.batch_size,
args.target=='expert')
val = train.split_dataset(args.val_ratio)
print("training count: {}".format(train.count))
print("testing count: {}".format(test.count))
print("word2idx:", len(words.word2idx))
print("idx2word:", len(words.idx2word))
print("story size: {}".format(args.story_size))
print("sentence size: {}".format(args.sentence_size))
print("question size: {}".format(args.question_size))
## create params ##
params_dict = vars(args)
params_class = namedtuple('params_class', params_dict.keys())
params = params_class(**params_dict)
## check target-action-dirs ##
if params.target == 'lm':
if params.action == 'train':
if params.load_dir or params.expert_dir or params.lm_dir:
raise Exception("No dir needed while training %s model!" % params.target)
train_process = train_lm
elif params.action == 'test':
if not params.load_dir:
raise Exception("Need a trained %s model to test!" % params.target)
if params.expert_dir or params.lm_dir:
raise Exception("No other dirs needed while testing %s model!" % params.target)
test_process = test_lm
else:
raise Exception("Unsupported action for %s!" % params.target)
elif params.target == 'expert':
if params.action == 'train':
if params.load_dir or params.expert_dir or params.lm_dir:
raise Exception("No dir needed while training %s model!" % params.target)
train_process = train_normal
elif params.action == 'test':
if not params.load_dir:
raise Exception("Need a trained %s model to test!" % params.target)
if params.expert_dir or params.lm_dir:
raise Exception("No other dirs needed while testing %s model!" % params.target)
test_process = test_normal
else:
raise Exception("Unsupported action for %s!" % params.target)
elif params.target == 'learner':
if params.action == 'train':
if params.load_dir:
raise Exception("Learner in %s mode can only be trained from scratch!" % params.action)
if (not params.expert_dir) or (not params.lm_dir):
raise Exception("Two auxiliary models are needed in learner %s mode! " % params.action)
train_process = train_normal
elif params.action == 'test':
if (not params.load_dir) or (not params.expert_dir) or (not params.lm_dir):
raise Exception("All dirs needed while in learner %s mode!" % params.action)
test_process = test_normal
elif params.action == 'rl':
if (not params.load_dir) or (not params.expert_dir) or (not params.lm_dir):
raise Exception("All dirs needed while in learner %s mode!" % params.action)
else:
if params.load_dir:
raise Exception("Learner in %s mode can only be trained from scratch!" % params.action)
if (not params.expert_dir) or (not params.lm_dir):
raise Exception("Two auxiliary models are needed in learner %s mode! " % params.action)
## load params from load_dir ##
if not params.load_dir == '':
params_filename = os.path.join(params.load_dir, 'params.json')
load_params = load_params_dict(params_filename)
if not load_params['task'] == params.task:
raise Exception("incompatible task with load model!")
if (not load_params['target'] == params.target) or (not load_params['arch'] == params.arch):
raise Exception("incompatible main model with load model!")
params = params._replace(**load_params)
else:
if tf.gfile.Exists(params.save_dir):
tf.gfile.DeleteRecursively(params.save_dir)
os.makedirs(params.save_dir, exist_ok=True)
## load expert params from expert_dir ##
if not params.expert_dir == '':
params_filename = os.path.join(params.expert_dir, 'params.json')
load_params = load_params_dict(params_filename)
if not load_params['task'] == params.task:
raise Exception("incompatible task with expert model!")
if not load_params['target'] == 'expert':
raise Exception("dir contains no expert model!")
expert_params = params._replace(action='test', load_dir=params.expert_dir, **load_params)
else:
expert_params = None
## load lm params from lm_dir ##
if not params.lm_dir == '':
params_filename = os.path.join(params.lm_dir, 'params.json')
load_params = load_params_dict(params_filename)
if not load_params['target'] == 'lm':
raise Exception("dir contains no language model!")
lm_params = params._replace(action='test',
load_dir=params.lm_dir,
lm_num_steps=1,
lm_batch_size=params.batch_size,
**load_params)
else:
lm_params = None
## run action ##
if args.action == 'train':
train_process(MainModel, params, expert_params, lm_params, words, train, val)
elif args.action == 'test':
test_process(MainModel, params, expert_params, lm_params, words, test)
elif args.action == 'rl':
main_model = MainModel(words, params, expert_params, lm_params)
main_model.rl_train(train, val)
main_model.save_params()
elif args.action == 'baseline':
run_baseline(MainModel, params, expert_params, lm_params, words, train, val)
elif args.action == 'experiments_rl':
run_experiments(MainModel, params, expert_params, lm_params, words, train, val, RL=True)
elif args.action == 'experiments_nonrl':
run_experiments(MainModel, params, expert_params, lm_params, words, train, val, RL=False)
if __name__ == '__main__':
tf.app.run()