-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreader.py
513 lines (392 loc) · 18.9 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
from utils.normalizer import normalize_line
import sys
import cPickle
import numpy
import logging
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import np_utils
from copy_reg import pickle
from types import MethodType
class Splitter(object):
MIN_LEN = 2
OTHER = ['di', 'a', 'da', 'in', 'su', 'il', 'lo', 'la', 'un', 'e', 'i', 'o', 'al', 'd', 'l', 'c']
def __init__(self, resource):
self.vocabulary = set()
for token in resource:
self.vocabulary.add(token.strip().lower())
for w in self.OTHER:
self.vocabulary.add(w)
def ngrams(self, word):
for i in range(Splitter.MIN_LEN, len(word)+1):
if word[:i] in self.vocabulary:
found = word[:i]
elems = [el for el in self.ngrams(word[i:])]
yield found , elems
def merge(self, prefix, structure):
a = structure[0]
if not structure[1]:
yield prefix + ' ' + a if prefix else a
for el in structure[1]:
for e in self.merge(prefix + ' ' + a if prefix else a, el):
yield e
def split(self, word):
for combinations in self.ngrams(word):
for tokens in self.merge('', combinations):
split = tokens.split()
yield split, sum([len(tok)/float(len(tokens)) for tok in split])
def inVocabulary(self, word):
return (word in self.vocabulary and word not in self.OTHER)
def _pickle_method(method):
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
for cls in cls.mro():
try:
func = cls.__dict__[func_name]
except KeyError:
pass
else:
break
return func.__get__(obj, cls)
# reader = ParallelReader(sys.stdin, 18, splitter)
# texts = []
# labels = []
# domains = []
# for domain, label, content, domain_words in reader.read():
# labels.append(label)
# texts.append(content)
# domains.append(domain_words)
class ParallelReader(object):
def __init__(self, input, processes, splitter):
self.input = input
self.pool = multiprocessing.Pool(processes)
self.splitter = splitter
def __getstate__(self):
self_dict = self.__dict__.copy()
del self_dict['pool']
return self_dict
def __setstate__(self, state):
self.__dict__.update(state)
def read(self):
for r in self.pool.imap_unordered(self.extract, self.input, 5):
if r:
yield r
def extract(self, line):
d, t, l = line.strip().split('\t')
d_words = sorted([el for el in self.splitter.split(d[:-3])], key=lambda x:x[1], reverse=True)
selected = [tok for words, th in d_words[:5] for tok in words]
domain_words = ' '.join(selected) if len(selected) > 0 else d[:-3]
content = ' '.join(normalize_line(t))
for label in l.split(','):
l = 0 if int(label) == 13 else int(label)
return d, l, content, domain_words
pickle(MethodType, _pickle_method, _unpickle_method)
class Reader(object):
def __init__(self, input):
self.input = input
self.fields = []
def __getstate__(self):
return self.__dict__
def __setstate__(self, d):
self.__dict__.update(d)
@staticmethod
def save(f, obj):
cPickle.dump({el: getattr(obj, el) for el in obj.fields}, open(f, 'wb'))
@staticmethod
def load(f):
return cPickle.load(open(f))
@staticmethod
def load_vectors(f, lower=True):
embeddings_index = {}
embeddings_size = None
for line in f:
if embeddings_size is None:
embeddings_size = int(line.strip().split()[-1])
continue
values = line.split()
word = values[0].lower() if lower else value[0]
coefs = numpy.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
return embeddings_index, embeddings_size
@staticmethod
def read_embeddings(f, max_words, word_index, lower=True):
# embeddings matrix
embeddings_index, embeddings_size = Reader.load_vectors(open(f), lower)
print >> sys.stderr, '*'*80
print >> sys.stderr, len(embeddings_index)
num_words = min(max_words, len(word_index))
embedding_matrix = numpy.zeros((num_words + 1, embeddings_size))
unk = []
for word, i in word_index.items():
if i > max_words:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
else:
unk.append(word)
print >> sys.stderr, 'unk words', len(unk)
print >> sys.stderr, unk
print >> sys.stderr, '*'*80
return num_words, embedding_matrix, embeddings_size
@staticmethod
def discard_zeros(X, embeddings):
debug_counter = 0
X_post = []
for example in X:
ex = []
for index in example:
if not embeddings[index].any():
debug_counter += 1
continue
ex.append(embeddings[index])
X_post.append(ex)
print >> sys.stderr, 'discard zeros: ', debug_counter
return numpy.asarray(X_post)
def extract_domain_tokens(self, domain):
d_words = sorted([el for el in self.splitter.split(domain[:-3])], key=lambda x:x[1], reverse=True)
selected = sorted(set([tok for words, th in d_words[:3] for tok in words if len(tok.decode('utf8')) > 2 and self.splitter.inVocabulary(tok)]), key=lambda x: len(x), reverse=True)
return ' '.join(selected) if len(selected) > 0 else domain[:-3]
class TextDomainReader(Reader):
def __init__(self, input=None,
max_sequence_length_content=None, max_words_content=None,
max_sequence_length_domains=None, max_words_domains=None,
content_vocabulary=None, domains_vocabulary=None,
tokenizer_content=None, tokenizer_domains=None,
nb_classes=-1, lower=False, logger=None, bpe=None, window=None):
super(TextDomainReader, self).__init__(input)
if input is None:
self.input = sys.stdin
self.max_sequence_length_content = max_sequence_length_content
self.max_words_content = max_words_content
self.max_sequence_length_domains = max_sequence_length_domains
self.max_words_domains = max_words_domains
self.content_vocabulary = content_vocabulary
self.domains_vocabulary = domains_vocabulary
self.splitter = Splitter(self.domains_vocabulary)
self.nb_classes = nb_classes
self.tokenizer_content = tokenizer_content
self.tokenizer_domains = tokenizer_domains
self.lower = lower
self.window = window
self.bpe = bpe
if logger:
self.logger = logger
else:
logging.basicConfig(stream=sys.stdout, format='%(asctime)s %(message)s', level=logging.INFO)
self.logger = logging
self.fields += [
'max_sequence_length_content',
'max_words_content',
'max_sequence_length_domains',
'max_words_domains',
'content_vocabulary',
'domains_vocabulary',
'nb_classes',
'tokenizer_content',
'tokenizer_domains',
'lower',
'window',
'bpe'
]
@staticmethod
def extract_windows(sequence, window_size):
d = []
for i in range(len(sequence)-window_size+1):
d.append(sequence[i:i+window_size])
return d
def _read(self):
labels = []
n_pages = []
texts = []
domains = []
self.logger.info('Reading corpus')
for i, line in enumerate(self.input):
d, t, l = line.strip().split('\t')
for label in l.split(','):
#l = 0 if int(label) == 13 else int(label)
labels.append(int(l))
text, n_page = normalize_line(t, lower=self.lower, window_size=self.window, bpe=self.bpe, vocabulary=self.content_vocabulary)
texts.append(' '.join(text))
n_pages.append(n_page)
domains.append(self.extract_domain_tokens(d))
return labels, n_pages, texts, domains
def read_for_test(self):
labels, n_pages, texts, domains = self._read()
sequences_domains = self.tokenizer_domains.texts_to_sequences(domains)
sequences_domains = sequence.pad_sequences(sequences_domains, padding='post', truncating='post', maxlen=self.max_sequence_length_domains)
sequences_content = self.tokenizer_content.texts_to_sequences(texts)
sequences_content = sequence.pad_sequences(sequences_content, padding='post', truncating='post', maxlen=self.max_sequence_length_content)
y_orig = labels
y = np_utils.to_categorical(y_orig, self.nb_classes)
X = sequences_content
X_domains = sequences_domains
return [X, X_domains], y, y_orig
def read(self, split=True):
labels, n_pages, texts, domains = self._read()
self.nb_classes = 12 #len(set(labels)) #43
self.logger.info('collecting domains sequences')
self.tokenizer_domains = Tokenizer(num_words=self.max_words_domains, lower=False)
self.tokenizer_domains.fit_on_texts(domains)
sequences_domains = self.tokenizer_domains.texts_to_sequences(domains)
sequences_domains = sequence.pad_sequences(sequences_domains, padding='post', truncating='post', maxlen=self.max_sequence_length_domains)
self.logger.info('collecting content sequences')
self.tokenizer_content = Tokenizer(num_words=self.max_words_content, lower=False)
self.tokenizer_content.fit_on_texts(texts)
sequences_content = self.tokenizer_content.texts_to_sequences(texts)
sequences_content = sequence.pad_sequences(sequences_content, padding='post', truncating='post', maxlen=self.max_sequence_length_content)
#sequences_content = numpy.asarray([self.extract_windows(seq, 5) for seq in sequences_content])
self.logger.info('Splitting corpus')
if split:
rng_state = numpy.random.get_state()
numpy.random.shuffle(sequences_content)
numpy.random.set_state(rng_state)
numpy.random.shuffle(labels)
numpy.random.set_state(rng_state)
numpy.random.shuffle(sequences_domains)
toSplit = int(len(sequences_content) * 0.1)
X_dev = sequences_content[0:toSplit]
X_dev_domains = sequences_domains[0:toSplit]
y_dev_orig = labels[0:toSplit]
y_dev = np_utils.to_categorical(y_dev_orig, self.nb_classes)
X_train = sequences_content[toSplit:]
X_train_domains = sequences_domains[toSplit:]
y_train = np_utils.to_categorical(labels[toSplit:], self.nb_classes)
return [X_train, X_train_domains], y_train, [X_dev, X_dev_domains], y_dev, y_dev_orig
return [sequences_content, sequences_domains], np_utils.to_categorical(labels, self.nb_classes)
class TextHeadingsDomainReader(Reader):
def __init__(self, input=None,
max_sequence_length_content=None, max_words_content=None,
max_sequence_length_domains=None, max_words_domains=None,
max_sequence_length_headings=None, max_words_headings=None,
content_vocabulary=None, domains_vocabulary=None, headings_vocabulary=None,
tokenizer_content=None, tokenizer_domains=None,
headings_content=None, tokenizer_headings=None,
nb_classes=-1, lower=False, logger=None, bpe=None, window=None,
size_n_pages=-1
):
super(TextHeadingsDomainReader, self).__init__(input)
if input is None:
self.input = sys.stdin
self.max_words_content = max_words_content
self.max_sequence_length_content = max_sequence_length_content
self.max_sequence_length_domains = max_sequence_length_domains
self.max_sequence_length_headings = max_sequence_length_headings
self.max_words_domains = max_words_domains
self.max_words_headings = max_words_headings
self.content_vocabulary = content_vocabulary
self.domains_vocabulary = domains_vocabulary
self.headings_vocabulary = headings_vocabulary
self.splitter = Splitter(self.domains_vocabulary)
self.nb_classes = nb_classes
self.tokenizer_content = tokenizer_content
self.tokenizer_domains = tokenizer_domains
self.tokenizer_headings = tokenizer_headings
self.lower = lower
self.window = window
self.bpe = bpe
self.size_n_pages = size_n_pages
if logger:
self.logger = logger
else:
logging.basicConfig(stream=sys.stdout, format='%(asctime)s %(message)s', level=logging.INFO)
self.logger = logging
self.fields = [
'max_sequence_length_content',
'max_words_content',
'max_sequence_length_domains',
'max_words_domains',
'max_sequence_length_headings',
'max_words_headings',
'content_vocabulary',
'domains_vocabulary',
'headings_vocabulary',
'nb_classes',
'tokenizer_content',
'tokenizer_domains',
'tokenizer_headings',
'lower',
'window',
'bpe',
'size_n_pages'
]
def _read(self):
labels = []
n_pages = []
texts = []
domains = []
headings = []
self.logger.info('Reading corpus')
for i, line in enumerate(self.input):
d, t, h, l = line.strip().split('\t')
for label in l.split(','):
#l = 0 if int(label) == 13 else int(label)
labels.append(int(l))
text, n_page = normalize_line(t, lower=self.lower, window_size=self.window, bpe=self.bpe, vocabulary=self.content_vocabulary)
texts.append(' '.join(text))
n_pages.append(n_page)
heading_text, _ = normalize_line(h, lower=self.lower, vocabulary=self.headings_vocabulary)
headings.append(' '.join(heading_text))
domains.append(self.extract_domain_tokens(d))
return labels, n_pages, texts, domains, headings
def read_for_test(self):
labels, n_pages, texts, domains, headings = self._read()
n_pages = np_utils.to_categorical(n_pages, self.size_n_pages)
sequences_domains = self.tokenizer_domains.texts_to_sequences(domains)
sequences_domains = sequence.pad_sequences(sequences_domains, padding='post', truncating='post', maxlen=self.max_sequence_length_domains)
sequences_content = self.tokenizer_content.texts_to_sequences(texts)
sequences_content = sequence.pad_sequences(sequences_content, padding='post', truncating='post', maxlen=self.max_sequence_length_content)
sequences_headings = self.tokenizer_headings.texts_to_sequences(headings)
sequences_headings = sequence.pad_sequences(sequences_headings, padding='post', truncating='post', maxlen=self.max_sequence_length_headings)
y_orig = labels
y = np_utils.to_categorical(y_orig, self.nb_classes)
return [n_pages, sequences_content, sequences_domains, sequences_headings], y, y_orig
def read(self, split=True):
labels, n_pages, texts, domains, headings = self._read()
self.nb_classes = len(set(labels))+2 #43
self.logger.info('collecting domains sequences')
self.tokenizer_domains = Tokenizer(num_words=self.max_words_domains, lower=False)
self.tokenizer_domains.fit_on_texts(domains)
sequences_domains = self.tokenizer_domains.texts_to_sequences(domains)
sequences_domains = sequence.pad_sequences(sequences_domains, padding='post', truncating='post', maxlen=self.max_sequence_length_domains)
self.logger.info('collecting content sequences')
self.tokenizer_content = Tokenizer(num_words=self.max_words_content, lower=False)
self.tokenizer_content.fit_on_texts(texts)
sequences_content = self.tokenizer_content.texts_to_sequences(texts)
sequences_content = sequence.pad_sequences(sequences_content, padding='post', truncating='post', maxlen=self.max_sequence_length_content)
self.logger.info('collecting headings sequences')
self.tokenizer_headings = Tokenizer(num_words=self.max_words_headings, lower=False)
self.tokenizer_headings.fit_on_texts(headings)
sequences_headings = self.tokenizer_headings.texts_to_sequences(headings)
sequences_headings = sequence.pad_sequences(sequences_headings, padding='post', truncating='post', maxlen=self.max_sequence_length_headings)
# numpy.set_printoptions(threshold=numpy.nan)
# print >> sys.stderr, self.max_sequence_length_headings, sequences_headings, '\n'
self.logger.info('Splitting corpus')
self.size_n_pages = max(n_pages) + 1
n_pages = np_utils.to_categorical(n_pages, self.size_n_pages)
if split:
rng_state = numpy.random.get_state()
numpy.random.shuffle(sequences_content)
numpy.random.set_state(rng_state)
numpy.random.shuffle(labels)
numpy.random.set_state(rng_state)
numpy.random.shuffle(sequences_domains)
toSplit = int(len(sequences_content) * 0.1)
X_dev_n_pages = n_pages[0:toSplit]
X_dev = sequences_content[0:toSplit]
X_dev_domains = sequences_domains[0:toSplit]
X_dev_headings = sequences_headings[0:toSplit]
y_dev_orig = labels[0:toSplit]
y_dev = np_utils.to_categorical(y_dev_orig, self.nb_classes)
X_train_n_pages = n_pages[toSplit:]
X_train = sequences_content[toSplit:]
X_train_domains = sequences_domains[toSplit:]
X_train_headings = sequences_headings[toSplit:]
y_train = np_utils.to_categorical(labels[toSplit:], self.nb_classes)
return [X_train_n_pages, X_train, X_train_domains, X_train_headings], y_train, [X_dev_n_pages, X_dev, X_dev_domains, X_dev_headings], y_dev, y_dev_orig
return [n_pages, sequences_content, sequences_domains, sequences_headings], np_utils.to_categorical(labels, self.nb_classes)