-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
100 lines (77 loc) · 3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
import pandas as pd
from tqdm import tqdm
from dataloader import TextLabelDataset
from model import TransformerModel
import logging
from torch.utils.tensorboard import SummaryWriter
logging.basicConfig(level=logging.INFO)
path = r'D:\NLP\nlp-reports-news-classification\water_problem_nlp_en_for_Kaggle_100.csv'
df = pd.read_csv(path, delimiter=';', header=0, encoding='cp1251')
if df.isna().any().any():
print("DataFrame contains NaN values")
else:
print("DataFrame does not contain NaN values")
df = df.fillna(0)
train_data, val_data = train_test_split(df, test_size=0.2, random_state=42)
# Set up the data loaders
train_dataset = TextLabelDataset(train_data, max_length=128)
val_dataset = TextLabelDataset(val_data, max_length=128)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=16)
# Set up the model
model = TransformerModel(output_dim=5, hidden_dim=768, num_layers=4, dropout=0.1)
# Set up the loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# Set up the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Set up TensorBoard
writer = SummaryWriter()
# Train the model
num_epochs = 10
for epoch in tqdm(range(num_epochs)):
# Train on the training data
train_loss = 0
model.train()
for step, (inputs, labels) in enumerate(train_loader):
inputs = {k: v.to(device) for k, v in inputs.items()}
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
# Clip the gradients to prevent exploding gradients - max norm 1
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
train_loss += loss.item()
# Log the training loss to TensorBoard
if step % 10 == 0:
writer.add_scalar('Train/Loss', train_loss / (step + 1), epoch * len(train_loader) + step)
# Evaluate on the validation data
val_loss = 0
model.eval()
y_true = []
y_pred = []
with torch.no_grad():
for inputs, labels in val_loader:
inputs = {k: v.to(device) for k, v in inputs.items()}
labels = labels.to(device)
print("Labels: ", labels)
outputs = model(inputs)
y_true.extend(labels.cpu().numpy())
y_pred.extend(outputs.cpu().numpy())
loss = criterion(outputs, labels)
val_loss += loss.item()
# Print the loss for this epoch
train_loss /= len(train_loader)
val_loss /= len(val_loader)
logging.info(f"\nEpoch {epoch + 1}: train loss={train_loss:.4f}, val loss={val_loss:.4f}")
# Log the validation loss to TensorBoard
writer.add_scalar('Val/Loss', val_loss, epoch)
# Close TensorBoard writer
writer.close()