-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnest_csa_RPC.py
139 lines (105 loc) · 4.03 KB
/
nest_csa_RPC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
'''
@author: Daniel Hjertholm
Tests for networks created by the CSA implementation in NEST, where
both sources and targets are drawn randomly.
'''
import numpy.random as rnd
import nest
import csa
from testsuite.RPC_test import RPCTester
class NEST_RPCTester(RPCTester):
'''
Tests for networks created by the CSA implementation in NEST, where
both sources and targets are drawn randomly.
'''
def __init__(self, N_s, N_t, N, e_min=10):
'''
Construct a test object.
Parameters
----------
N_s : Number of nodes in source population.
N_t : Number of nodes in target population.
N : Total number of connections.
e_min: Minimum expected number of observations in each bin.
'''
nest.set_verbosity('M_FATAL')
RPCTester.__init__(self, N_s=N_s, N_t=N_t, N=N, e_min=e_min)
self._param_dict = {'weight_m': 1.0,
'weight_s': 0.1,
'delay_m' : 1.0,
'delay_s' : 0.2}
def _RandomPopulationConnect(self, pre, post, n, param_dict,
synapse_model='static_synapse'):
'''...'''
nest.sli_func('RandomPopulationConnectD', pre, post, n, param_dict,
'/' + synapse_model, litconv=True)
def _reset(self, seed):
'''
Reset the simulator and seed the PRNGs.
Parameters
----------
seed: PRNG seed value.
'''
nest.ResetKernel()
# Set PRNG seed values:
if seed == None:
seed = rnd.randint(10 ** 10)
seed = 3 * seed
rnd.seed(seed)
nest.SetKernelStatus({'grng_seed': seed + 1,
'rng_seeds': [seed + 2]})
def _build(self):
'''Create populations.'''
self._source_pop = nest.Create('iaf_neuron', self._N_s)
self._target_pop = nest.Create('iaf_neuron', self._N_t)
def _connect(self):
'''Connect populations.'''
finite_set = csa.cross(xrange(self._N_s), xrange(self._N_t))
cs = csa.cset(csa.random(N=self._N) * finite_set)
nest.CGConnect(self._source_pop, self._target_pop, csa.cset(cs))
def _degrees(self):
'''Return list of degrees.'''
connections = nest.GetConnections(source=self._source_pop)
i = 0 if self._degree == 'out' else 1
connections = [conn[i] for conn in connections]
return self._counter(connections)
class InDegreeTester(NEST_RPCTester):
'''
Tests for the in-degree distribution of networks created by the CSA
implementation in NEST, where both sources and targets are drawn randomly.
'''
def __init__(self, N_s, N_t, N, e_min=10):
'''
Construct a test object.
Parameters
----------
N_s : Number of nodes in source population.
N_t : Number of nodes in target population.
N : Total number of connections.
e_min: Minimum expected number of observations in each bin.
'''
self._degree = 'in'
NEST_RPCTester.__init__(self, N_s, N_t, N, e_min)
class OutDegreeTester(NEST_RPCTester):
'''
Tests for the out-degree distribution of networks created by the CSA
implementation in NEST, where both sources and targets are drawn randomly.
'''
def __init__(self, N_s, N_t, N, e_min=10):
'''
Construct a test object.
Parameters
----------
N_s : Number of nodes in source population.
N_t : Number of nodes in target population.
N : Total number of connections.
e_min: Minimum expected number of observations in each bin.
'''
self._degree = 'out'
NEST_RPCTester.__init__(self, N_s, N_t, N, e_min)
if __name__ == '__main__':
test = InDegreeTester(N_s=100, N_t=100, N=10000)
ks, p = test.two_level_test(n_runs=100, start_seed=0)
print 'p-value of KS-test of uniformity:', p
test.show_CDF()
test.show_histogram()