-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathcaffe_functions.py
315 lines (251 loc) · 11 KB
/
caffe_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
###############################################################################
# Caffe VGG_S net emotion classification
#
# This file contains utility functions for interactions with the Caffe
# deep learning framework.
#
#
# Date modified: March 2016
#
# Authors: Dan Duncan
# Gautam Shine
#
###############################################################################
import os, shutil, sys, time, re, glob
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import Image
import caffe
from utility_functions import *
# Load mean caffe image
def loadMeanCaffeImage(img="mean_training_image.binaryproto",curDir="datasets/"):
mean_filename=os.path.join(curDir,img)
proto_data = open(mean_filename, "rb").read()
a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
mean = caffe.io.blobproto_to_array(a)[0]
return mean
# Display an image (input is numpy array)
def showimage(img):
if img.ndim == 3:
img = img[:, :, ::-1]
plt.set_cmap('jet')
plt.imshow(img,vmin=0, vmax=0.2)
# Display network activations
def vis_square(data, padsize=1, padval=0):
data -= data.min()
data /= data.max()
# Force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# Tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
showimage(data)
# Plot the last image and conv1 layer's weights and responses
def plot_layer(input_image, VGG_S_Net, layer):
plt.figure(1)
_ = plt.imshow(input_image)
plt.figure(2)
filters = VGG_S_Net.params[layer][0].data
vis_square(filters.transpose(0, 2, 3, 1))
plt.figure(3)
feat = VGG_S_Net.blobs[layer].data[0]
vis_square(feat)
plt.show(block=False)
# RGB dimension swap + resize
# Depending on how an image was imported, sometimes it will be XxYxRGB and
# other times it will be RGBxXxY.
# This function takes either as input, and it always returns RGBxXxY.
def mod_dim(img, x=256, y=256, c=3):
# Resize only if necessary:
if not np.array_equal(img.shape,[c,x,y]):
resized = caffe.io.resize_image(img, (x,y,c)) # (256, 256, 3)
rearranged = np.swapaxes(np.swapaxes(resized, 1, 2), 0, 1) # (3,256,256)
else:
rearranged = img
return rearranged
# Calculate mean image over list of image filenames
# Can also return the mean image if it is already saved as "mean.binaryproto"
def compute_mean(input_list, plot_mean=False):
# If no data supplied, use mean supplied with pretrained model
if len(input_list) == 0:
net_root = '.'
net_dir = 'VGG_S_rgb'
mean_filename=os.path.join(net_root, net_dir, 'mean.binaryproto')
proto_data = open(mean_filename, "rb").read()
a = caffe.io.caffe_pb2.BlobProto.FromString(proto_data)
mean = caffe.io.blobproto_to_array(a)[0]
else:
x,y,c = 256,256,3
mean = np.zeros((c, x, y))
for img_file in input_list:
img = caffe.io.load_image(img_file)
img = mod_dim(img, x, y, c)
mean += img
mean /= len(input_list)
# Plot the mean image if desired:
if plot_mean:
plt.imshow(np.swapaxes(np.swapaxes(mean, 0, 1), 1, 2))
plt.show()
return mean
# Given filename for mean image, and the directory containing a network file
# Construct and return a Caffe network object
# Note: For legacy reasons, this assumes your model is stored in:
# ./models/[net_dir]/EmotiW_VGG_S.caffemodel
# where net_dir is supplied by the user
def make_net(mean=None, net_dir='VGG_S_rgb'):
# net_dir specifies a root directory containing a *.caffemodel file
# Options in our setup are: VGG_S_[rgb / lbp / cyclic_lbp / cyclic_lbp_5 / cyclic_lbp_10]
# This should hopefully already be in your system path, but just to be sure:
caffe_root = '/home/Users/Dan/Development/caffe/'
sys.path.insert(0, caffe_root + 'python')
# Configure matplotlib
plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# Generate paths to the various model files
net_root = 'models'
net_pretrained = os.path.join(net_root, net_dir, 'EmotiW_VGG_S.caffemodel')
net_model_file = os.path.join(net_root, net_dir, 'deploy.prototxt')
# Construct Caffe network object
VGG_S_Net = caffe.Classifier(net_model_file, net_pretrained,
mean=mean,
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
return VGG_S_Net
# Load a minibatch of images
# Inputs: List of image filenames,
# Color boolean (true if images are in color),
# List of labels corresponding to each image,
# Index of first image to load
# Number of images to load
# Output: List of image numpy arrays of size Num x (W x H x 3)
# List of labels for just the images in the batch
def load_minibatch(input_list, color, labels, start,num):
# Enforce minimum on start
start = max(0,start)
# Enforce maximum on end
end = start + num
end = min(len(input_list), end)
# Isolate files
files = input_list[start:end]
images = []
for file in files:
img = caffe.io.load_image(file, color)
# Handle incorrect image dims for uncropped images
# TODO: Get uncropped images to import correctly
if img.shape[0] == 3 or img.shape[0] == 1:
img = np.swapaxes(np.swapaxes(img, 0, 1), 1, 2)
# BUG FIX: Is this ok?
# color=True gets the correct desired dimension of WxHx3
# But color=False gets images of WxHx1. Need WxHx3 or will get "Index out of bounds" exception
# Fix by concatenating three copies of the image
if img.shape[2] == 1:
img = cv.merge([img,img,img])
# Add image array to batch
images.append(img)
labelsReduced = labels[start:end]
return images, labelsReduced
# Big function:
# Classify all images in a list of image file names
# Using the inputs, constructs a network, imports images either individually or in minibatches,
# gets the network classification, and builds up the confusion matrix.
# No return value, but it can plot the confusion matrix at the end
def classify_emotions(input_list, color, categories, labels, plot_neurons, plot_confusion,useMean=True):
# Compute mean
#mean = compute_mean(input_list)
if useMean:
mean = loadMeanCaffeImage()
else:
mean = None
# Create VGG_S net with mean
VGG_S_Net = make_net(mean,net_dir='Custom_Model')
# Classify images in directory
conf_mat = [] # tuples to be passed to confusion matrix generator
numImages = len(input_list)
# Due to network architecture, using minibatches does not speed anything up
# (at least for datasets of up to 3000 images)
miniBatch = False
if miniBatch:
i = 0
batchSize = 500
metrics = [] # Will hold tuples of timing metrics for all batches
totalLoad, totalPredict = 0, 0
while i < numImages:
t = time.time()
images,labelsReduced = load_minibatch(input_list, color, labels, i, batchSize)
loadTime = time.time() - t
totalLoad += loadTime
print 'Batch of ' + str(len(images)) + ' images.'
# images is a list of input images
# Input images should be WxHx3, e.g. 490x640x3
t = time.time()
prediction = VGG_S_Net.predict(images, oversample=False)
predictTime = time.time() - t
totalPredict += predictTime
for j in range(len(prediction)):
pred = prediction[j]
lab = labelsReduced[j]
# Append (label, prediction) tuple to confusion matrix list
conf_mat.append((lab, pred.argmax()))
# Print results as Filename: Prediction
#print(input_list[i+j].split('/')[-1]+': '+categories[prediction.argmax()])
metrics.append((len(images),loadTime,predictTime))
i += batchSize
# Print all timing metrics
print "\nTiming data for classify_emotions() (minibatch mode):"
for i in range(len(metrics)):
bs, ltime, ptime = metrics[i]
print "Batch " + str(i) + " (" + str(bs) + " images):\tLoad: " + str(ltime) + "s\t Predict: " + str(ptime) + "s"
print "\nTotal images: " + str(len(input_list))
print "Total time loading: " + str(totalLoad) + "\t(" + str(float(totalLoad)/len(input_list)) + "s / image)"
print "Total time predicting: " + str(totalPredict) + "\t(" + str(float(totalPredict)/len(input_list)) + "s / image)"
print " "
else:
loadTime, predictTime = 0, 0
for i in range(numImages):
img_file = input_list[i]
label = labels[i]
print('File name: ', img_file)
t = time.time()
input_image = caffe.io.load_image(img_file)
loadTime += time.time() - t
# Handle incorrect image dims for uncropped images
# TODO: Get uncropped images to import correctly
if input_image.shape[0] == 3:
input_image = np.swapaxes(np.swapaxes(input_image, 0, 1), 1, 2)
# Input image should be WxHxK, e.g. 490x640x3
t = time.time()
prediction = VGG_S_Net.predict([input_image], oversample=False)
predictTime += time.time() - t
# Append (label, prediction) tuple to confusion matrix list
conf_mat.append((label, prediction.argmax()))
# Print results as Filename: Prediction
print(img_file.split('/')[-1]+': '+categories[prediction.argmax()])
# Print timing metrics:
print "\nTiming data for classify_emotions() (serial mode):"
print "Load time: " + str(loadTime) + "s\t(" + str(loadTime/numImages) + "s / image)"
print "Predict time:" + str(predictTime) + "s\t(" + str(predictTime/numImages) + "s / image)"
print " "
if plot_neurons:
layer = 'conv1'
plot_layer(input_image, VGG_S_Net, layer)
# Generates confusion matrix and calculates accuracy
confusion_matrix(conf_mat, categories, plot_confusion)
# Classify all faces in a single video frame
# Return a labels list of integer labels
def classify_video_frame(frame, faces, VGG_S_Net, categories=None):
# Convert to float format
# Video frames normally imported as uint32
frame = frame.astype(np.float32)
frame /= 255.0
labels = []
for x,y,w,h in faces:
img = frame[y:y+h,x:x+w,:]
# Input image should be WxHxK, e.g. 490x640x3
prediction = VGG_S_Net.predict([img], oversample=False)
labels.append(prediction.argmax())
return labels