-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrandom_prime.c
613 lines (559 loc) · 18.5 KB
/
random_prime.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <gmp.h>
#include "ptypes.h"
#include "random_prime.h"
#include "utility.h"
#include "primality.h"
#include "gmp_main.h"
#include "isaac.h"
#include "prime_iterator.h"
static char pr[31] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127};
void mpz_random_nbit_prime(mpz_t p, UV n)
{
switch (n) {
case 0:
case 1: mpz_set_ui(p, 0); return;
case 2: mpz_set_ui(p, pr[ 0+isaac_rand(2)]); return;
case 3: mpz_set_ui(p, pr[ 2+isaac_rand(2)]); return;
case 4: mpz_set_ui(p, pr[ 4+isaac_rand(2)]); return;
case 5: mpz_set_ui(p, pr[ 6+isaac_rand(5)]); return;
case 6: mpz_set_ui(p, pr[11+isaac_rand(7)]); return;
case 7: mpz_set_ui(p, pr[18+isaac_rand(13)]); return;
default: break;
}
/* For 32-bit inputs, use fast trivial method */
if (n <= 32) {
uint32_t mask = (0xFFFFFFFFU >> (34-n)) << 1, base = mask+3;
do {
mpz_set_ui(p, base | (isaac_rand32() & mask));
} while (!_GMP_is_prob_prime(p));
} else {
#if 0
do { /* Trivial method. */
mpz_isaac_urandomb(p, n);
mpz_setbit(p, n-1);
mpz_setbit(p, 0);
} while (!_GMP_is_prob_prime(p));
#else
mpz_t base; /* Fouque+Tibouchi Alg 1, without modulo checks */
mpz_init(base);
if (n > 33) { mpz_isaac_urandomb(base, n-33); mpz_mul_2exp(base,base,1); }
mpz_setbit(base, n-1);
mpz_setbit(base, 0);
do {
mpz_set_ui(p, isaac_rand32());
mpz_mul_2exp(p, p, n-32);
mpz_ior(p, p, base);
} while (!_GMP_is_prob_prime(p));
mpz_clear(base);
#endif
}
}
/* PRIMEINC: pick random value, select next prime. */
/* Fast but bad distribution. */
static int _random_prime_primeinc(mpz_t p, const mpz_t lo, const mpz_t hi)
{
mpz_t r, t;
mpz_init(t);
mpz_init(r);
mpz_sub(r, hi, lo);
mpz_isaac_urandomm(t, r);
mpz_clear(r);
mpz_add(t, t, lo);
mpz_sub_ui(t, t, 1);
_GMP_next_prime(t);
if (mpz_cmp(t,hi) > 0) {
mpz_sub_ui(t, lo, 1);
_GMP_next_prime(t);
if (mpz_cmp(t,hi) > 0) {
mpz_clear(t);
return 0;
}
}
mpz_set(p, t);
mpz_clear(t);
return 1;
}
/* TRIVIAL: pick random values until one is prime */
/* Perfect distribution. */
static int _random_prime_trivial(mpz_t p, const mpz_t lo_in, const mpz_t hi_in)
{
mpz_t r, t, lo, hi;
int res = 0, tries = 10000;
if (mpz_cmp_ui(hi_in,2) < 0 || mpz_cmp(lo_in,hi_in) > 0)
return 0;
mpz_init_set(lo, lo_in);
mpz_init_set(hi, hi_in);
if (mpz_cmp_ui(lo,2) <= 0) {
mpz_set_ui(lo,1);
} else if (mpz_even_p(lo)) {
mpz_add_ui(lo,lo,1);
}
if (mpz_cmp_ui(hi,2) <= 0) {
mpz_set_ui(hi,1);
} else if (mpz_even_p(hi)) {
mpz_sub_ui(hi,hi,1);
}
/* lo and hi are now odd */
if (mpz_cmp(lo,hi) >= 0) {
if (mpz_cmp(lo,hi) > 0) {
/* null range */
} else if (mpz_cmp_ui(lo,1) == 0) {
mpz_set_ui(p,2);
res = 1;
} else if (_GMP_is_prob_prime(lo)) {
mpz_set(p,lo);
res = 1;
}
mpz_clear(hi); mpz_clear(lo);
return res;
}
/* lo and hi are now odd and at least one odd between them */
mpz_init(t);
mpz_init(r);
mpz_sub(r, hi, lo);
mpz_tdiv_q_2exp(r, r, 1);
mpz_add_ui(r,r,1);
do {
mpz_isaac_urandomm(t, r);
mpz_mul_2exp(t, t, 1);
mpz_add(t, t, lo);
if (mpz_cmp_ui(t,1) == 0) mpz_set_ui(t,2); /* map 1 back to 2 */
} while (!_GMP_is_prob_prime(t) && --tries > 0);
if (tries > 0) {
mpz_set(p, t);
res = 1;
} else {
/* We couldn't find anything. Perhaps no primes in range. */
res = _random_prime_primeinc(p, lo, hi);
}
mpz_clear(r); mpz_clear(t); mpz_clear(hi); mpz_clear(lo);
return res;
}
/* Set p to a random prime between lo and hi inclusive */
int mpz_random_prime(mpz_t p, const mpz_t lo, const mpz_t hi)
{
return _random_prime_trivial(p,lo,hi);
}
void mpz_random_ndigit_prime(mpz_t p, UV n)
{
mpz_t lo, hi;
switch (n) {
case 0: mpz_set_ui(p,0); return;
case 1: mpz_set_ui(p, pr[isaac_rand(4)]); return;
case 2: mpz_set_ui(p, pr[4+isaac_rand(21)]); return;
default: break;
}
mpz_init_set_ui(lo,10);
mpz_pow_ui(lo, lo, n-1);
mpz_init(hi);
mpz_mul_ui(hi, lo, 10);
if (!mpz_random_prime(p, lo, hi))
croak("Failed to find %"UVuf" digit prime\n", n);
mpz_clear(lo);
mpz_clear(hi);
}
/* Random number rop such that 2*mult*rop+1 has nbits bits. */
static void _rand_in_bit_interval(mpz_t rop, UV nbits, mpz_t mult)
{
mpz_t t, lo, hi;
mpz_init(t); mpz_init(lo); mpz_init(hi);
mpz_mul_ui(t, mult, 2);
mpz_setbit(lo, nbits-1);
mpz_sub_ui(lo, lo, 1);
mpz_cdiv_q(lo, lo, t); /* lo = ceil(2^(nbits-1)-1 / (2*mult)) */
mpz_setbit(hi, nbits);
mpz_sub_ui(hi, hi, 2);
mpz_fdiv_q(hi, hi, t); /* hi = floor(2^nbits-2 / (2*mult)) */
mpz_sub(t, hi, lo);
mpz_isaac_urandomm(rop, t);
mpz_add(rop, rop, lo);
mpz_clear(t); mpz_clear(lo); mpz_clear(hi);
}
#define _SAFE_REJECT(q, p1, p2, p3, p4, p5) \
{ uint32_t qm = mpz_fdiv_ui(q, p1*p2*p3*p4*p5); \
if ((qm % p1) == 0 || (qm % p1) == (p1>>1)) continue; \
if ((qm % p2) == 0 || (qm % p2) == (p2>>1)) continue; \
if ((qm % p3) == 0 || (qm % p3) == (p3>>1)) continue; \
if ((qm % p4) == 0 || (qm % p4) == (p4>>1)) continue; \
if ((qm % p5) == 0 || (qm % p5) == (p5>>1)) continue; \
}
void mpz_random_safe_prime(mpz_t p, UV nbits)
{
static const unsigned char small_safe[] = {5,7,11,23,47,59,83,107};
mpz_t q, base;
uint32_t qmod, PR, tlimit;
int verbose;
PRIME_ITERATOR(iter);
switch (nbits) {
case 0: case 1: case 2: mpz_set_ui(p, 0); return;
case 3: mpz_set_ui(p, small_safe[ 0+isaac_rand(2)]); return;
case 4: mpz_set_ui(p, 11); return;
case 5: mpz_set_ui(p, 23); return;
case 6: mpz_set_ui(p, small_safe[ 4+isaac_rand(2)]); return;
case 7: mpz_set_ui(p, small_safe[ 6+isaac_rand(2)]); return;
default: break;
}
mpz_init(q); mpz_init(base);
if (nbits > 35) {
mpz_isaac_urandomb(base, nbits-35);
mpz_mul_2exp(base,base,2);
}
mpz_setbit(base, nbits-1);
mpz_setbit(base, 1);
mpz_setbit(base, 0);
verbose = get_verbose_level();
tlimit = (nbits <= 512000) ? (nbits*(nbits/64.0) + 0.5) : 4000000000U;
while (1) {
/* 1. Generate random nbit p */
if (nbits > 35) {
mpz_set_ui(p, isaac_rand32());
mpz_mul_2exp(p, p, nbits-33);
} else {
mpz_isaac_urandomb(p, nbits-3);
mpz_mul_2exp(p, p, 2);
}
mpz_ior(p, p, base);
/* 2. p = 2q+1 => q = p >> 1 */
mpz_div_2exp(q, p, 1);
/* 3. Fast compositeness pretests for both q and p at the same time. */
qmod = mpz_fdiv_ui(q, 1155UL);
if ( (qmod % 3) != 2 ||
(qmod % 5) == 0 || (qmod % 7) == 0 || (qmod % 11) == 0 ||
(qmod % 5) == 2 || (qmod % 7) == 3 || (qmod % 11) == 5) continue;
if (nbits < 16) {
/* 4. Pretest that p isn't easily composite */
if (!primality_pretest(p)) continue;
/* 5. Pretest that q isn't easily composite */
if (!primality_pretest(q)) continue;
} else {
_SAFE_REJECT(q, 13U, 17U, 19U, 23U, 29U);
_SAFE_REJECT(q, 31U, 37U, 41U, 43U, 47U);
_SAFE_REJECT(q, 53U, 59U, 61U, 67U, 71U);
_SAFE_REJECT(q, 73U, 79U, 83U, 89U, 97U);
if (tlimit >= 101) {
prime_iterator_setprime(&iter, PR = 101);
while (PR <= tlimit) {
uint32_t qm = mpz_fdiv_ui(q, PR);
if (qm == 0 || qm == (PR>>1)) break;
PR = prime_iterator_next(&iter);
}
if (PR <= tlimit) continue;
}
}
if (verbose > 2) { printf("."); fflush(stdout); }
/* 6. BPSW on q and M-R base 2 on p. */
if (!is_euler_plumb_pseudoprime(q)) continue; /* Start faster */
if (verbose > 2) { printf("+"); fflush(stdout); }
if (!miller_rabin_ui(p, 2)) continue;
if (verbose > 2) { printf("*"); fflush(stdout); }
if (!_GMP_is_lucas_pseudoprime(q, 2)) continue;
if (nbits > 64 && !miller_rabin_ui(q, 2)) continue; /* Verify fast test */
break;
}
mpz_clear(base); mpz_clear(q);
prime_iterator_destroy(&iter);
}
/* Gordon's algorithm */
void mpz_random_strong_prime(mpz_t p, UV nbits)
{
mpz_t S, T, R, P0, t, i, j;
UV rbits, sbits, tbits;
if (nbits < 128) croak("random_strong_prime, bits must be >= 128");
if (nbits < 256) {
rbits = ((nbits+1) >> 1) - 2;
sbits = (nbits >> 1) - 20;
tbits = rbits - 20;
} else {
UV N1, N2;
{ /* Calculate FIPS 186-4 C.10 recommended parameter */
UV t_, l2_;
for (l2_ = 1, t_ = nbits; t_ >>= 1; ) l2_++;
N1 = (nbits/2)-l2_-7;
N2 = N1/2;
}
if (N1 > 200) N1 = 201;
if (N2 > 100) N2 = 101;
if (N2 < 100) N2 += N1/4;
rbits = sbits = N1;
tbits = N2;
}
mpz_init(S); mpz_init(T); mpz_init(R); mpz_init(P0);
mpz_init(t); mpz_init(i); mpz_init(j);
while (1) {
mpz_random_nbit_prime(S, sbits);
mpz_random_nbit_prime(T, tbits);
_rand_in_bit_interval(i, rbits, T);
while (1) {
mpz_mul(t, i, T);
mpz_mul_ui(t, t, 2);
mpz_add_ui(R, t, 1); /* R = 2*i*T+1 */
if (_GMP_is_prob_prime(R)) break;
mpz_add_ui(i,i,1);
}
mpz_sub_ui(t, R, 2);
mpz_powm(P0, S, t, R);
mpz_mul_ui(P0, P0, 2);
mpz_mul(P0, P0, S);
mpz_sub_ui(P0, P0, 1);
mpz_mul(i, R, S);
mpz_mul_ui(t, i, 2);
_rand_in_bit_interval(j, nbits, i);
while (1) {
mpz_mul(p, j, t);
mpz_add(p, p, P0); /* p = 2*j*R*S+p0 */
if (mpz_sizeinbase(p,2) > nbits) break;
if (_GMP_is_prob_prime(p)) {
mpz_clear(t); mpz_clear(i); mpz_clear(j);
mpz_clear(S); mpz_clear(T); mpz_clear(R); mpz_clear(P0);
/* p-1 has factor R. p+1 has factor S. r-1 has factor T. */
return;
}
mpz_add_ui(j,j,1);
}
}
}
/*===========================================================================*/
/* Proven primes (Maurer and Shawe-Taylor */
/*===========================================================================*/
#define MAKE_PROOF_START(proofptr, n, nums) \
if (proofptr) { \
char* thisproof, *thisptr; \
int prevlen = (*proofptr == 0) ? 0 : strlen(*proofptr); \
int thislen = (5 + mpz_sizeinbase(n,10)) * nums + 200; \
New(0, thisproof, thislen + prevlen + 1, char); \
thisptr = thisproof; \
thisptr += gmp_sprintf(thisptr,
#define MAKE_PROOF_END(proofptr) \
); \
if (*proofptr) { \
thisptr += gmp_sprintf(thisptr,"\n"); \
strcat(thisptr, *proofptr); \
Safefree(*proofptr); \
} \
*proofptr = thisproof; \
}
#define USE_THEOREM5 0
void mpz_random_maurer_prime(mpz_t n, UV k, char** proofptr)
{
mpz_t t, a, q, I, R;
double m, r, minr = USE_THEOREM5 ? 0.334 : 0.5;
int i, verbose = get_verbose_level();
/* We could use safely use k <= 64. */
if (k <= 32)
return mpz_random_nbit_prime(n, k);
r = minr; /* size of q relative to size of n */
m = 20; /* always use at least this many bits of randomness */
if (k > 2*m) {
do {
double s = ((double)isaac_rand32()) / ((double)4294967295.0); /* [0,1] */
r = pow(2,s-1); /* exp2 is C99 */
#if USE_THEOREM5
r = 0.334 + 1.332 * (r-0.5); /* Stretch r to cover 0.334 - 1 */
#endif
} while ((k-r*k) <= m);
}
#if 0 /* Improve efficiency for less than ideal distribution */
r -= 0.25; if (r < minr) r = minr;
#endif
mpz_init(t); mpz_init(a); mpz_init(q); mpz_init(I); mpz_init(R);
mpz_random_maurer_prime(q, (UV)(r*k)+1, proofptr);
mpz_setbit(I, k-1);
mpz_mul_ui(t, q, 2);
mpz_fdiv_q(I, I, t); /* I = floor(2^(k-1) / 2q) */
if (verbose && verbose != 3)
{ gmp_printf("r = %lf k = %lu q = %Zd I = %Zd\n",r,k,q,I); fflush(stdout); }
while (1) {
if (verbose > 2) { printf("."); fflush(stdout); }
mpz_isaac_urandomm(R, I); /* [0, I-1] */
mpz_add(R, R, I); /* [I, 2I-I] */
mpz_add_ui(R, R, 1); /* [I+1,2I] */
#if USE_THEOREM5
mpz_setbit(R, 0); /* We need R to be odd */
#endif
mpz_mul(n, R, q);
mpz_mul_ui(n,n,2);
mpz_add_ui(n,n,1); /* n = 2Rq+1 */
if (!primality_pretest(n)) continue;
if (verbose > 2) { printf("+"); fflush(stdout); }
/* if (!is_euler_plumb_pseudoprime(n)) continue; */
if (!miller_rabin_ui(n,2)) continue;
/* n is a base-2 psp and probably prime */
if (verbose > 2) { printf("*"); fflush(stdout); }
/* See if we can use BLS75 theorem 3 */
mpz_mul_ui(t, q, 2);
mpz_add_ui(t, t, 1);
mpz_mul(t, t, t);
if (mpz_cmp(t, n) > 0) {
for (i = 0; i < 20; i++) {
mpz_set_ui(a, pr[i]);
/* Check A^R mod N != N-1 */
mpz_powm(a, a, R, n);
mpz_add_ui(t,a,1);
if (mpz_cmp(t, n) == 0) continue;
/* Check A^{Rq} mod N == N-1 */
mpz_powm(a, a, q, n);
mpz_add_ui(t,a,1);
if (mpz_cmp(t, n) != 0) continue;
if (verbose > 2) { printf("(%"UVuf")",k); fflush(stdout); }
/* Ensure all results passed BPSW. ~20% speed penalty. */
if (!_GMP_is_lucas_pseudoprime(n,2)) croak("Maurer internal failure");
MAKE_PROOF_START(proofptr, n, 3)
"Type BLS3\nN %Zd\nQ %Zd\nA %u\n", n, q, pr[i]
MAKE_PROOF_END(proofptr)
mpz_clear(t); mpz_clear(a); mpz_clear(q); mpz_clear(I); mpz_clear(R);
return;
}
/* Blast, we couldn't find the right 'a' value fast enough. Try a new n. */
continue;
}
/* Our q is smaller than sqrt(n)/2-1, so use BLS75 theorem 5. */
#if !USE_THEOREM5
croak("random_maurer_prime: internal bit size error");
#else
/* Check for obvious generation problems. */
if (mpz_even_p(R)) continue;
if (mpz_cmp_ui(R, 1) <= 0) continue;
mpz_gcd(t, q, R); if (mpz_cmp_ui(t, 1) != 0) continue;
/* Theorem 5 with m = 2, assuming (I) which we'll check after this. */
{
mpz_t ts, tr, F;
mpz_init(ts); mpz_init(tr); mpz_init(F);
mpz_mul_ui(F, q, 2);
/* Calculate r,s from page 624 of BLS75 */
mpz_mul_ui(t, F, 2);
mpz_tdiv_qr(ts, tr, R, t);
/* Verify the r,s condition */
mpz_mul(t, tr, tr);
mpz_submul_ui(t, ts, 8); /* t = r^2-8s */
if (mpz_sgn(ts) != 0 && mpz_perfect_square_p(t)) {
/* printf("fail r/s check\n"); */
mpz_clear(ts); mpz_clear(tr); mpz_clear(F);
continue;
}
/* Verify size of N with m=2. a,t are temps. Should not fail. */
mpz_mul(t, F, tr);
mpz_add_ui(a, t, 1); /* a = rF + 1 */
mpz_sub_ui(tr, tr, 1);
mpz_mul(t, F, F);
mpz_mul_ui(t, t, 2);
mpz_mul(t, t, tr);
mpz_add(a, a, t); /* a = (r-1)2FF + rF + 1 */
mpz_mul(t, F, F);
mpz_mul(t, t, F);
mpz_mul_ui(t, t, 4);
mpz_add(a, a, t); /* a = 4FFF + (r-1)2FF + rF + 1 */
mpz_add_ui(t, F, 1);
mpz_clear(tr); mpz_clear(ts); mpz_clear(F);
if (mpz_cmp(n,a) >= 0) {
/* printf("fail N size check\n"); */
continue;
}
/* Check divisibility required to use m=2 */
if (mpz_divisible_p(n,t)) {
/* printf("fail N divisiblity check\n"); */
continue;
}
}
#define SET_A_CHECK_PSP(i) \
mpz_set_ui(a, pr[i]); \
if (apsp[i] == -1) \
{ mpz_sub_ui(t,n,1); mpz_powm(t,a,t,n); apsp[i] = (mpz_cmp_ui(t,1) == 0); } \
if (apsp[i] == 0) continue;
#define CHECK_GCD(t) \
mpz_powm(t, a, t, n); mpz_sub_ui(t, t, 1); mpz_gcd(t, t, n); \
if (mpz_cmp_ui(t,1) != 0) continue;
{
int j, apsp[20]; /* apsp caches psp check. Init all to -1. */
for (i = 0; i < 20; i++) apsp[i] = -1;
apsp[0] = 1; /* We passed a base 2 psp test to get here */
/* Find an a that works for p=2 */
for (i = 0; i < 20; i++) {
SET_A_CHECK_PSP(i);
mpz_mul(t, q, R);
CHECK_GCD(t);
/* We are good for p=2. Find an a for p=q. */
for (j = 0; j < 20; j++) {
SET_A_CHECK_PSP(j);
mpz_mul_ui(t, R, 2);
CHECK_GCD(t);
/* Success */
if (verbose > 2) { printf("(%lu)",k); fflush(stdout); }
if (i == 0 && j == 0) {
MAKE_PROOF_START(proofptr, n, 2)
"Type BLS5\nN %Zd\nQ[1] %Zd\n----\n", n, q
MAKE_PROOF_END(proofptr)
} else {
MAKE_PROOF_START(proofptr, n, 2)
"Type BLS5\nN %Zd\nQ[1] %Zd\nA[0] %lu\nA[1] %lu\n----\n", n, q, pr[i], pr[j]
MAKE_PROOF_END(proofptr)
}
/* Ensure all results passed BPSW. ~20% speed penalty. */
if (!_GMP_is_lucas_pseudoprime(n,2)) croak("Maurer internal failure");
mpz_clear(t); mpz_clear(a); mpz_clear(q); mpz_clear(I); mpz_clear(R);
return;
}
break; /* Failed for p=q */
}
}
/* Blast, we couldn't find the right 'a' value fast enough. Try a new n. */
#endif
}
}
/* FIPS 186-4 algorithm but using our CSPRNG (ISAAC) instead of SHA-256 */
void mpz_random_shawe_taylor_prime(mpz_t c, UV k, char** proofptr)
{
mpz_t c0, t, u, a, z;
if (k <= 32)
return mpz_random_nbit_prime(c, k);
mpz_init(c0); mpz_init(t); mpz_init(u); mpz_init(a); mpz_init(z);
mpz_random_shawe_taylor_prime(c0, 1 + (k+1)/2, proofptr);
mpz_isaac_urandomb(t, k-1);
mpz_setbit(t,k-1); /* Steps 18-21: t a random k-bit integer */
mpz_mul_ui(u, c0, 2);
mpz_cdiv_q(t, t, u); /* Step 22: set t based on random integer */
while (1) {
/* Steps 23-24 */
mpz_mul_ui(u, c0, 2); /* u = 2c0 */
mpz_mul(c, u, t);
mpz_add_ui(c, c, 1); /* c = 2tc0+1 */
if (mpz_sizeinbase(c,2) > k) {
mpz_set_ui(t,0);
mpz_setbit(t,k-1);
mpz_cdiv_q(t, t, u);
mpz_mul(c, u, t);
mpz_add_ui(c, c, 1);
}
/* Don't bother with Steps 26-31 for obvious composites */
if (primality_pretest(c) && miller_rabin_ui(c,2)) {
/* Steps 26-29 */
mpz_sub_ui(u, c, 3);
mpz_isaac_urandomm(a, u);
mpz_add_ui(a, a, 2);
/* Step 30 */
mpz_mul_ui(u, t, 2);
mpz_powm(z, a, u, c);
/* Step 31 */
mpz_sub_ui(u, z, 1);
mpz_gcd(u, u, c);
if (mpz_cmp_ui(u, 1) == 0) {
mpz_powm(u, z, c0, c);
if (mpz_cmp_ui(u, 1) == 0) {
/* Ensure all results passed BPSW. ~20% speed penalty. */
if (!_GMP_is_lucas_pseudoprime(c,2)) croak("ST internal failure");
MAKE_PROOF_START(proofptr, c, 3)
"Type Pocklington\nN %Zd\nQ %Zd\nA %Zd\n", c, c0, a
MAKE_PROOF_END(proofptr)
mpz_clear(c0); mpz_clear(t); mpz_clear(u); mpz_clear(a); mpz_clear(z);
return;
}
}
}
mpz_add_ui(t,t,1);
}
}
/*===========================================================================*/