-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcoco_trainval.py
446 lines (365 loc) · 18.8 KB
/
coco_trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
'''
Copyright (C) 2010-2021 Alibaba Group Holding Limited.
'''
import os
import time
import random
import numpy as np
from sacred import Experiment
import logging
from easydict import EasyDict as edict
from PIL import Image
import copy
import pickle
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
from scipy.optimize import linear_sum_assignment as linear_assignment
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, Dataset, ConcatDataset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.parallel import DataParallel as DP
from torch.utils.data.distributed import DistributedSampler
from torchvision import transforms as pth_transforms
from models.segmenter.segmenter_things import Segmenter as Model
from dataloaders.PrefetchLoader import PrefetchLoader
from dataloaders import transforms_uss_thingstuff
from dataloaders.coco_id_idx_map import coco_id_idx_map
from utils.misc import AverageMeter, init_process, sync_model, get_params_groups, save_network_checkpoint
from utils.metric import scores, get_result_metrics
from pycocotools.coco import COCO
ex = Experiment('cocostuff')
def create_basic_stream_logger(format):
logger = logging.getLogger('')
logger.setLevel(logging.INFO)
logger.handlers = []
ch = logging.StreamHandler()
formatter = logging.Formatter(format)
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
ex.logger = create_basic_stream_logger('%(levelname)s - %(name)s - %(message)s')
ex.add_config('./configs/cocostuff.yaml')
cudnn.enabled = True
cudnn.benchmark = False
cudnn.deterministic = True
@ex.capture
def load_train_dataset_coco(cfg, split='train', pseudo_label_save_dir=None, num_samples=None, _log=None):
train_transform = pth_transforms.Compose([
transforms_uss_thingstuff.ToTensor(),
transforms_uss_thingstuff.ResizeTensor(size=(cfg.dataset.resize, cfg.dataset.resize), img_only=False),
])
_log.info(f"load pseudo_label from {pseudo_label_save_dir}")
dataset = MSCOCO17(transform=train_transform,
split=split,
dataset_root_dir=cfg.dataset.root_dir_mscoco,
pseudo_label_save_dir=pseudo_label_save_dir,
pseudo_label_size=cfg.dataset.pseudo_label_size,
num_workers=cfg.dataset.num_workers,
num_things=cfg.model.decoder.n_things,
num_samples=num_samples,
orientation=0)
return dataset
def load_val_dataset_coco(cfg, split='val', pseudo_label_save_dir=None, num_samples=None):
train_transform = pth_transforms.Compose([
transforms_uss_thingstuff.NormInput(),
transforms_uss_thingstuff.ToTensor(),
transforms_uss_thingstuff.ResizeTensor(size=(cfg.dataset.resize, cfg.dataset.resize), img_only=False),
])
dataset = MSCOCO17(transform=train_transform,
split=split,
dataset_root_dir=cfg.dataset.root_dir_mscoco,
pseudo_label_save_dir=pseudo_label_save_dir,
pseudo_label_size=cfg.dataset.pseudo_label_size,
num_workers=cfg.dataset.num_workers,
num_things=cfg.model.decoder.n_things,
num_samples=num_samples,
orientation=0)
return dataset
class MSCOCO17(Dataset):
def __init__(self,
split=None,
dataset_root_dir=None,
pseudo_label_save_dir=None,
pseudo_label_size=40,
num_workers=4,
num_things=80,
transform=None,
num_samples=None,
orientation=0,
):
assert split in ['train', 'val']
self.split = 'train2017' if split == 'train' else 'val2017'
self.dataset_root_dir = dataset_root_dir
self.pseudo_label_save_dir = pseudo_label_save_dir
self.pseudo_label_size = pseudo_label_size
self.num_workers = num_workers
self.transform = transform
self.num_samples = num_samples
self.num_things = num_things
self.JPEGPath = f"{self.dataset_root_dir}/images/{self.split}"
self.PNGPath = f"{self.dataset_root_dir}/annotations/{self.split}"
self.annFile = f"{self.dataset_root_dir}/annotations/instances_{self.split}.json"
self.coco = COCO(self.annFile)
all_ids = self.coco.imgToAnns.keys()
samples_list_1 = []
samples_list_2 = []
tic = time.time()
for id in all_ids:
img_meta = self.coco.loadImgs(id)
assert len(img_meta) == 1
H, W = img_meta[0]['height'], img_meta[0]['width']
if H < W:
samples_list_1.append(id)
else:
samples_list_2.append(id)
if orientation == 0:
samples_list = samples_list_1 + samples_list_2
elif orientation == 1:
samples_list = samples_list_1
elif orientation == 2:
samples_list = samples_list_2
else:
raise NotImplementedError
if self.num_samples is not None:
samples_list = samples_list[:self.num_samples]
self.samples_list = samples_list
def __len__(self):
return len(self.samples_list)
def __getitem__(self, idx):
id = self.samples_list[idx]
img_meta = self.coco.loadImgs(id)
assert len(img_meta) == 1
img_meta = img_meta[0]
if self.pseudo_label_save_dir is not None:
pseudo_label_things_save_path = os.path.join(self.pseudo_label_save_dir, img_meta['file_name'].split('.')[0] +f'_fg_{self.num_things}_{self.pseudo_label_size}x{self.pseudo_label_size}')
assert os.path.exists(pseudo_label_things_save_path)
# image
image = np.array(Image.open(f"{self.JPEGPath}/{img_meta['file_name']}").convert('RGB'))
label_cat = np.array(Image.open(f"{self.PNGPath}/{img_meta['file_name'].replace('jpg', 'png')}"))
if self.num_things == 80:
_coco_id_idx_map = np.vectorize(lambda x: coco_id_idx_map[x])
elif self.num_things == 12:
raise NotImplementedError
else:
raise NotImplementedError
label_cat = _coco_id_idx_map(label_cat)
sample_ = dict()
sample_['img'] = image
sample_['label_cat'] = label_cat
sample_['meta'] = {'sample_name': img_meta['file_name'].split('.')[0]}
if self.pseudo_label_save_dir is not None:
pseudo_label_things_save_path = os.path.join(self.pseudo_label_save_dir, img_meta['file_name'].split('.')[0] +f'_fg_{self.num_things}_{self.pseudo_label_size}x{self.pseudo_label_size}')
sample_['pseudo_label_things'] = pickle.load(open(pseudo_label_things_save_path, 'rb'))
if self.transform is not None:
sample_ = self.transform(sample_)
sample = dict()
sample['images'] = sample_['img']
sample['label_cat'] = sample_['label_cat']
sample['meta'] = sample_['meta']
if self.pseudo_label_save_dir is not None:
sample['pseudo_label_things'] = sample_['pseudo_label_things']
return sample
@ex.capture
def train_coco(cfg, model, model_init_weights, optimizer, data_loader, history, device, epoch, epoch_iter, _log):
batch_time = AverageMeter()
losses_all = AverageMeter()
losses_cat = AverageMeter()
losses_uncertainty = AverageMeter()
losses_cls_emb = AverageMeter()
tic = time.time()
model.train()
epoch_step = 10
bootstrapping_start_epoch = cfg.model.bootstrapping_start_epoch
intervals = torch.Tensor([int(i) for i in str(cfg.model.teacher_update_interval).split(',')])
teacher_update_interval = intervals[0] if len(intervals) == 1 else intervals[min(epoch // epoch_step, len(intervals) - 1)]
if not epoch < bootstrapping_start_epoch and epoch % teacher_update_interval.item() == 0:
_log.info(f"Epoch {epoch:2d}, update teacher and reboot student, set epoch_iter and lr to 0")
epoch_iter = 0
if hasattr(model, 'module'):
model.module.encoder_teacher.load_state_dict(copy.deepcopy(model.module.encoder.state_dict()))
model.module.decoder_teacher.load_state_dict(copy.deepcopy(model.module.decoder.state_dict()))
model.module.encoder.load_state_dict(copy.deepcopy(model_init_weights['encoder_init_weights']))
model.module.decoder.load_state_dict(copy.deepcopy(model_init_weights['decoder_init_weights']))
else:
model.encoder_teacher.load_state_dict(copy.deepcopy(model.encoder.state_dict()))
model.decoder_teacher.load_state_dict(copy.deepcopy(model.decoder.state_dict()))
model.encoder.load_state_dict(copy.deepcopy(model_init_weights['encoder_init_weights']))
model.decoder.load_state_dict(copy.deepcopy(model_init_weights['decoder_init_weights']))
else:
epoch_iter = epoch_iter + 1
for index, sample in enumerate(data_loader):
images = sample['images'].float().to(device, non_blocking=True) # image, normalized
label_cat = sample['label_cat'].float().to(device, non_blocking=True) # label
pseudo_label_things = sample['pseudo_label_things'].float().to(device, non_blocking=True) # things pseudo label
assert cfg.model.decoder.n_things == pseudo_label_things.shape[1]
optimizer.zero_grad()
losses = model(images, return_loss=True, label=label_cat, pseudo_labels=pseudo_label_things,
bootstrapping=True if not epoch < bootstrapping_start_epoch else False,
augment=True, epoch=epoch_iter)
loss_cat = losses['loss_cat'].mean()
loss_uncertainty = losses['loss_uncertainty'].mean()
loss_cls_emb = losses['loss_cls_emb'].mean()
w = [float(w) for w in str(cfg.model.loss.weights).split(',')]
w = torch.Tensor(w).to(device)
assert len(w) == 3
loss = w[0] * loss_cat + w[1] * loss_uncertainty + w[2] * loss_cls_emb
if loss > 0:
loss.backward()
for param in model.parameters():
if param.grad is not None:
param.grad.data.clamp_(-1, 1)
optimizer.step()
losses_all.update(loss.detach().item())
losses_cat.update(loss_cat.detach().item())
losses_uncertainty.update(loss_uncertainty.detach().item())
losses_cls_emb.update(loss_cls_emb.detach().item())
# update time
batch_time.update(time.time() - tic)
tic = time.time()
_log.info(f"train epoch: [{epoch}][{index + 1:4d}/{len(data_loader):4d}]\t"
f"Time: {batch_time.val:.2f} ({batch_time.avg:.2f})\t"
f"Loss(cat/unc/emb/all): {losses_cat.val:.4f}/{losses_uncertainty.val:.4f}/{losses_cls_emb.val:.4f}/{losses_all.val:.4f} "
f"({losses_cat.avg:.4f}/{losses_uncertainty.avg:.4f}/{losses_cls_emb.avg:.4f}/{losses_all.avg:.4f})")
_log.info(f"* train epoch: [{epoch}]\t"
f"loss(cat/unc/emb/all): {losses_cat.avg:.4f}/{losses_uncertainty.avg:.4f}/{losses_cls_emb.avg:.4f}/{losses_all.avg:.4f}")
history['train']['loss'].append(losses_all.avg)
return epoch_iter
@ex.capture
def eval_coco(cfg, model, data_loader, history, device, epoch, exp_ckpt_dir, _log):
batch_time = AverageMeter()
tic = time.time()
model.eval()
N_things = cfg.model.decoder.n_things
N_stuff = 1
N_cls = N_things + N_stuff
histogram = np.zeros((N_cls, N_cls))
for index, sample in enumerate(data_loader):
images = sample['images'].float().to(device, non_blocking=True) # image, normalized
label_cat = sample['label_cat'].int().to(device, non_blocking=True) # label
N, C, H, W = images.shape
with torch.no_grad():
probs = model(images)
probs = F.interpolate(probs, size=(H, W), mode='bilinear', align_corners=False)
preds = probs.topk(1, dim=1)[1].view(N, -1).cpu().numpy()
label_cat_ = label_cat.view(N, -1).cpu().numpy()
histogram += scores(label_cat_, preds, N_cls)
# update time
batch_time.update(time.time() - tic)
tic = time.time()
_log.info(f"eval epoch: [{epoch}][{index + 1:4d}/{len(data_loader):4d}]\t"
f"Time: {batch_time.val:.2f} ({batch_time.avg:.2f})")
# Hungarian Matching.
m = linear_assignment(histogram.max() - histogram)
new_hist = np.zeros((N_cls, N_cls))
for idx in range(N_cls):
new_hist[m[1][idx]] = histogram[idx]
res = get_result_metrics(new_hist)
_log.info(f"ACC - All: {res['overall_precision (pixel accuracy)']:.4f}")
_log.info(f"mIOU - All: {res['mean_iou']:.4f}")
_log.info(f"* eval epoch: [{epoch}]\tACC: {res['overall_precision (pixel accuracy)']:.4f}\t"
f"mIoU: {res['mean_iou']:.4f}")
history['val']['metric'].append(res['mean_iou'] + res['overall_precision (pixel accuracy)'])
if cfg.eval_only:
generate_and_save_vis(model, data_loader, device, m, exp_ckpt_dir)
@ex.capture
def generate_and_save_vis(model, data_loader, device, m, save_root_dir, _log):
mean = torch.Tensor((0.485, 0.456, 0.406))[:, None, None].to(device)
std = torch.Tensor((0.229, 0.224, 0.225))[:, None, None].to(device)
map = np.vectorize(lambda x: {i: id for i, id in enumerate(m[0][np.argsort(m[1])])}[x])
from utils.colormap import colormap
import cv2
save_dir = os.path.join(save_root_dir, 'visualization')
os.makedirs(save_dir, exist_ok=True)
for index, sample in enumerate(data_loader):
images = sample['images'].float().to(device, non_blocking=True) # image, normalized
label_cat = sample['label_cat'].int().to(device, non_blocking=True) # label
N, C, H, W = images.shape
with torch.no_grad():
probs = model(images)
probs = F.interpolate(probs, size=(H, W), mode='bilinear', align_corners=False)
masks_ = probs.max(dim=1)[1].detach().cpu()
images_ = (((images * std) + mean) * 255).int()
for mask, image, label, name in zip(masks_, images_, label_cat, sample['meta']['sample_name']):
image_ = image.permute(1, 2, 0).cpu().numpy()
mask_ = colormap[map(mask.cpu())]
label_ = colormap[label.cpu()]
vis = np.concatenate([image_, mask_, label_], 1)
cv2.imwrite(f"{save_dir}/{name}.png", vis[:, :, ::-1])
_log.info(f"vis batch [{index + 1:4d}/{len(data_loader):4d}]")
_log.info(f"visualization saved into {save_dir}")
@ex.automain
def main(_run, _log):
cfg = edict(_run.config)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed_all(cfg.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
exp_ckpt_dir = os.path.join(_run.meta_info['options']['--file_storage'], str(_run._id)) if _run._id else os.path.join('train', 'public')
pseudo_label_train_save_dir = os.path.join(cfg.dataset.root_dir_pseudo_label, f'pseudo_label_cocostuff_{cfg.model.decoder.n_things+cfg.model.decoder.n_stuff}')
os.makedirs(exp_ckpt_dir, exist_ok=True)
# Network Builders
model = Model(cfg.model)
if cfg.eval_only:
pretrain_model = cfg.model.decoder.pretrained_weight
assert os.path.exists(pretrain_model)
decoder_state_dict = torch.load(pretrain_model, map_location=torch.device('cpu'))
model.decoder.load_state_dict(decoder_state_dict, strict=True)
print(f"load pretrained model from {pretrain_model}")
else:
assert os.path.exists(pseudo_label_train_save_dir)
model_init_weights = {'encoder_init_weights': copy.deepcopy(model.encoder.state_dict()),
'decoder_init_weights': copy.deepcopy(model.decoder.state_dict())}
use_ddp = cfg.model.use_ddp == 1
if torch.cuda.is_available():
model.cuda()
if torch.cuda.device_count() > 1:
_log.info(f"using {torch.cuda.device_count()} gpus")
if use_ddp:
init_process()
model = DDP(model, find_unused_parameters=True)
sync_model('sync_dir', model)
else:
model = DP(model)
paras = get_params_groups(model, cfg)
if cfg.optimizer == 'adam':
optimizer = torch.optim.Adam(paras, lr=cfg.lr, weight_decay=cfg.weight_decay)
else:
raise NotImplementedError
train_dataset_coco = load_train_dataset_coco(cfg, split=cfg.dataset.split, pseudo_label_save_dir=pseudo_label_train_save_dir)
if cfg.dataset.repeat > 0:
train_dataset_coco = ConcatDataset([train_dataset_coco for _ in range(cfg.dataset.repeat)])
val_dataset_coco = load_val_dataset_coco(cfg, split='val', pseudo_label_save_dir=None)
val_loader_coco = DataLoader(val_dataset_coco, batch_size=cfg.dataset.val_batch_size,
shuffle=False, num_workers=cfg.dataset.num_workers, pin_memory=True)
if torch.cuda.is_available():
val_loader_coco = PrefetchLoader(val_loader_coco)
# save losses per epoch
history = {'train': {'loss': [], 'metric_pred': 0, 'metric_pseudo_label': 0, },
'val': {'metric': [], 'best_metric': 0}}
if cfg.eval_only:
with torch.no_grad():
eval_coco(cfg, model, val_loader_coco, history, device, 0, exp_ckpt_dir)
else:
epoch_iter = 0
for epoch in range(cfg.num_epochs):
sampler = DistributedSampler(train_dataset_coco, shuffle=True) if torch.cuda.device_count() > 1 and use_ddp else None
train_loader = DataLoader(train_dataset_coco, batch_size=cfg.dataset.train_batch_size,
shuffle=False if sampler else True,
num_workers=cfg.dataset.num_workers,
prefetch_factor=4,
persistent_workers=True,
pin_memory=True, drop_last=True, sampler=sampler)
if torch.cuda.is_available():
train_loader = PrefetchLoader(train_loader)
epoch_iter = train_coco(cfg, model, model_init_weights, optimizer, train_loader, history, device, epoch, epoch_iter, )
if (epoch + 1) % cfg.eval_interval == 0:
with torch.no_grad():
eval_coco(cfg, model, val_loader_coco, history, device, epoch, exp_ckpt_dir)
if history['val']['metric'][-1] > history['val']['best_metric']:
history['val']['best_metric'] = history['val']['metric'][-1]
save_network_checkpoint(exp_ckpt_dir, model.module.encoder, model.module.decoder, is_best=True)
else:
save_network_checkpoint(exp_ckpt_dir, model.module.encoder, model.module.decoder, is_best=False)