-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfutoshiki_datagen.py
269 lines (229 loc) · 9.02 KB
/
futoshiki_datagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import itertools
from tqdm.auto import tqdm
import pickle
from collections import Counter
from copy import deepcopy
from torch.utils.data import Dataset
from joblib import Parallel, delayed
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--ofile', required=True, type=str, help='path to the output file')
parser.add_argument('--yfile', type=str, default=None, help='path to the file containing targets')
parser.add_argument('--num-samples', default=10000, type=int, help='num samples', required=True)
parser.add_argument('--board-size', default=5, type=int, help='size of board', required=True)
parser.add_argument('--num-constraints', default=5, type=int, help='max number of inequality contraints', required=True)
parser.add_argument('--num-missing', default=10, type=int, help='number of missing board positions', required=True)
parser.add_argument('--nthreads', type=int, default=1, help='number of threads to use for computation')
parser.add_argument('--mode', type=str, default="train", help='train, test or val mode')
args = parser.parse_args()
def permute(l):
ll=[]
num=len(l)
if num==1:
return [l]
else:
for i in range(num):
tmp=permute(l[:i]+l[i+1:])
for j in tmp:
ll.append([l[i]]+j)
return ll
def fact(n):
return np.product(np.arange(1,n+1))
def shuffle(a):
np.random.shuffle(a)
return a
def check_validity(grid, constraints=None):
for x in range(len(grid)):
row = set(grid[x])
if len(row)!=len(grid):
return False
col = set(grid[:,x])
if len(col)!=len(grid):
return False
if constraints is None:
return True
gt = zip(*np.nonzero(constraints[0]))
for ind in gt:
next_ind = (ind[0],ind[1]+1)
if grid[next_ind]>grid[ind]:
return False
lt = zip(*np.nonzero(constraints[1]))
for ind in lt:
next_ind = (ind[0],ind[1]+1)
if grid[next_ind]<grid[ind]:
return False
return True
def generate_all_puzzle(grid_size, dumpfile):
permutations = np.array(permute(list(range(1,grid_size+1))))
puzzles = []
offset_size = fact(grid_size-1)
# find all the combination of rows which lead to solution
for index in tqdm(itertools.product(*[shuffle(list(range(offset_size))) for x in range(grid_size)])):
offset_index = [offset_size*i+x for i,x in enumerate(index)]
grid = permutations[offset_index]
if check_validity(grid):
puzzles.append(grid)
print("Found",len(puzzles))
if len(puzzles)>300:
break
# permute the rows of the solutions found
permuted_puzzles = []
for puzzle in puzzles:
for permut in permutations:
permuted_puzzles.append(puzzle[permut-1])
with open(dumpfile,"wb") as f:
pickle.dump(permuted_puzzles,f)
return permuted_puzzles
class FutoshikiDataset:
"""The dataset for nqueens tasks."""
def __init__(self,
n=5,
num_missing = 1,
num_constraints = 5,
random_seed = 42,
data_file = None):
super().__init__()
self._n = n
self.num_missing = num_missing
self.relations = self.get_relation()
self.num_constraints = num_constraints
with open(data_file,"rb") as f:
self.dataset = pickle.load(f)
np.random.seed(random_seed)
def check_validity(self,grid, constraints=None):
for x in range(len(grid)):
row = set(grid[x])
if len(row)!=len(grid):
return False
col = set(grid[:,x])
if len(col)!=len(grid):
return False
if constraints is None:
return True
gt = zip(*np.nonzero(constraints[0]))
for ind in gt:
next_ind = (ind[0],ind[1]+1)
if grid[next_ind]>grid[ind]:
return False
lt = zip(*np.nonzero(constraints[1]))
for ind in lt:
next_ind = (ind[0],ind[1]+1)
if grid[next_ind]<grid[ind]:
return False
return True
def get_relation(self):
n = self._n
n2 = self._n**2
n3 = self._n**3
relations = np.zeros((n3, n3,3))
for x in range(n3):
row = int(x/n2)
col = int((x%n2)/n)
num = int(x%n2)%n
for y in range(n):
# cell constraints
relations[x][row*n2+col*n+y][0]=1
# row constraints
relations[x][y*n2+col*n+num][1]=1
# column constraints
relations[x][row*n2+y*n+num][2]=1
return relations
def get_one_hot(self,grid):
grid = grid.flatten()
expand_grid = np.zeros((grid.size, self._n+1))
expand_grid[np.arange(grid.size),grid] = 1
expand_grid = expand_grid[:,1:]
expand_grid = expand_grid.flatten()
return expand_grid
def find_solutions(self,query,zero_ind, constraints):
size = self._n
query_tight = query.reshape(size,size)
full_set = set(range(size+1))
fill_sets = []
for ind in zero_ind:
row_set = set(query_tight[int(ind/size)])
col_set = set(query_tight[:,ind%size])
fill_sets.append(list(full_set.difference(row_set.union(col_set))))
solutions = []
counter = 0
for sol in itertools.product(*fill_sets):
solution = query_tight.flatten()
solution[zero_ind] = sol
solution = solution.reshape(size,size)
if self.check_validity(solution, constraints):
solutions.append(self.get_one_hot(solution))
counter+=1
if counter>1:
return solutions
return solutions
def pad_set(self,target_set):
target_set = target_set[:self.max_count]
pad_counter = self.max_count - len(target_set)
return_set = list(target_set)
return_set.extend([target_set[-1] for _ in range(pad_counter)])
return np.array(return_set)
def get_constraints(self,grid):
offset_grid = np.roll(grid,-1,axis=1)
gt = grid>offset_grid
gt[:,-1]=False
lt = grid<offset_grid
lt[:,-1]=False
c = list(zip(*gt.nonzero()))
idx = np.random.choice(range(len(c)),self.num_constraints,replace=True)
gt_constraints = np.zeros_like(gt)
for i in idx:
gt_constraints[c[i]]=1
c = list(zip(*lt.nonzero()))
idx = np.random.choice(range(len(c)),self.num_constraints,replace=True)
lt_constraints = np.zeros_like(lt)
for i in idx:
lt_constraints[c[i]]=1
return np.stack([gt_constraints,lt_constraints])
def generate_data(self, unique=False, ambiguous=False):
for _ in range(100):
ind = np.random.choice(range(len(self.dataset)))
grid = self.dataset[ind]
expanded_grid = self.get_one_hot(grid)
board_dim = self._n
constraints = self.get_constraints(grid)
query = grid.flatten()
zero_ind = np.random.choice(range(len(query)),self.num_missing,replace=False)
mask = np.ones_like(query)
mask[zero_ind]=0
query = query*mask
target_set = self.find_solutions(query,zero_ind,constraints)
count = len(target_set)
is_ambiguous = 1 if count>1 else 0
if is_ambiguous and unique:
continue
if is_ambiguous==0 and ambiguous:
continue
qid = np.array([ind]+list(zero_ind))
target = target_set[np.random.randint(len(target_set))]
query = self.get_one_hot(query)
gt_constraints = constraints[0].flatten().repeat(self._n)
lt_constraints = constraints[1].flatten().repeat(self._n)
query = np.stack([query,gt_constraints,lt_constraints]).transpose()
return dict(n=board_dim, query=query, target=target, target_set=target_set, count=count, is_ambiguous=int(is_ambiguous), qid=qid, relations=self.relations)
raise
def meta_gen(i,mode):
futo = FutoshikiDataset(
n=args.board_size,
num_missing = args.num_missing,
num_constraints=args.num_constraints,
random_seed = i+20*mode,
data_file = args.yfile)
return [futo.generate_data() for i in range(args.num_samples//args.nthreads)]
if args.yfile is None:
generate_all_puzzle(args.board_size,"futoshiki_"+str(args.board_size)+".pkl")
args.yfile = "futoshiki_"+str(args.board_size)+".pkl"
mode=0
if args.mode=="val":
mode=1
if args.mode=="test":
mode=2
data = Parallel(n_jobs=args.nthreads,backend="multiprocessing")(delayed(meta_gen)(i,mode) for i in range(args.nthreads))
data = [x for group in data for x in group]
with open(args.ofile,"wb") as f:
pickle.dump(data,f)