-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathcones.c
834 lines (757 loc) · 22.2 KB
/
cones.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
#include "cones.h"
#include "linalg.h"
#include "scs.h"
#include "scs_blas.h" /* contains BLAS(X) macros and type info */
#include "util.h"
#define BOX_CONE_MAX_ITERS (25)
#define POW_CONE_TOL (1e-9)
#define POW_CONE_MAX_ITERS (20)
/* Box cone limits (+ or -) taken to be INF */
#define MAX_BOX_VAL (1e15)
#ifdef USE_LAPACK
#ifdef __cplusplus
extern "C" {
#endif
void BLAS(syev)(const char *jobz, const char *uplo, blas_int *n, scs_float *a,
blas_int *lda, scs_float *w, scs_float *work, blas_int *lwork,
blas_int *info);
blas_int BLAS(syrk)(const char *uplo, const char *trans, const blas_int *n,
const blas_int *k, const scs_float *alpha,
const scs_float *a, const blas_int *lda,
const scs_float *beta, scs_float *c, const blas_int *ldc);
void BLAS(scal)(const blas_int *n, const scs_float *sa, scs_float *sx,
const blas_int *incx);
#ifdef __cplusplus
}
#endif
#endif
/* Forward declare exponential cone projection routine.
* Implemented in exp_cone.c.
*/
scs_float SCS(proj_pd_exp_cone)(scs_float *v0, scs_int primal);
void SCS(free_cone)(ScsCone *k) {
if (k) {
if (k->bu)
scs_free(k->bu);
if (k->bl)
scs_free(k->bl);
if (k->q)
scs_free(k->q);
if (k->s)
scs_free(k->s);
if (k->p)
scs_free(k->p);
scs_free(k);
}
}
void SCS(deep_copy_cone)(ScsCone *dest, const ScsCone *src) {
memcpy(dest, src, sizeof(ScsCone));
/* copy bu, bl */
if (src->bsize > 1) {
dest->bu = (scs_float *)scs_calloc(src->bsize - 1, sizeof(scs_float));
memcpy(dest->bu, src->bu, (src->bsize - 1) * sizeof(scs_float));
dest->bl = (scs_float *)scs_calloc(src->bsize - 1, sizeof(scs_float));
memcpy(dest->bl, src->bl, (src->bsize - 1) * sizeof(scs_float));
} else {
dest->bu = SCS_NULL;
dest->bl = SCS_NULL;
}
/* copy SOC */
if (src->qsize > 0) {
dest->q = (scs_int *)scs_calloc(src->qsize, sizeof(scs_int));
memcpy(dest->q, src->q, src->qsize * sizeof(scs_int));
} else {
dest->q = SCS_NULL;
}
/* copy PSD cone */
if (src->ssize > 0) {
dest->s = (scs_int *)scs_calloc(src->ssize, sizeof(scs_int));
memcpy(dest->s, src->s, src->ssize * sizeof(scs_int));
} else {
dest->s = SCS_NULL;
}
/* copy power cone */
if (src->psize > 0) {
dest->p = (scs_float *)scs_calloc(src->psize, sizeof(scs_float));
memcpy(dest->p, src->p, src->psize * sizeof(scs_float));
} else {
dest->p = SCS_NULL;
}
}
/* set the vector of rho y terms, based on scale and cones */
void SCS(set_r_y)(const ScsConeWork *c, scs_float scale, scs_float *r_y) {
scs_int i;
/* z cone */
for (i = 0; i < c->k->z; ++i) {
/* set rho_y small for z, similar to rho_x term, since z corresponds to
* dual free cone, this effectively decreases penalty on those entries
* and lets them be determined almost entirely by the linear system solve
*/
r_y[i] = 1.0 / (1000. * scale);
}
/* others */
for (i = c->k->z; i < c->m; ++i) {
r_y[i] = 1.0 / scale;
}
}
/* the function f aggregates the entries within each cone */
void SCS(enforce_cone_boundaries)(const ScsConeWork *c, scs_float *vec,
scs_float (*f)(const scs_float *, scs_int)) {
scs_int i, j, delta;
scs_int count = c->cone_boundaries[0];
scs_float wrk;
for (i = 1; i < c->cone_boundaries_len; ++i) {
delta = c->cone_boundaries[i];
wrk = f(&(vec[count]), delta);
for (j = count; j < count + delta; ++j) {
vec[j] = wrk;
}
count += delta;
}
}
static inline scs_int get_sd_cone_size(scs_int s) {
return (s * (s + 1)) / 2;
}
/*
* boundaries will contain array of indices of rows of A corresponding to
* cone boundaries, boundaries[0] is starting index for cones of size strictly
* larger than 1, boundaries malloc-ed here so should be freed.
*/
void set_cone_boundaries(const ScsCone *k, ScsConeWork *c) {
scs_int i, s_cone_sz, count = 0;
scs_int cone_boundaries_len =
1 + k->qsize + k->ssize + k->ed + k->ep + k->psize;
scs_int *b = (scs_int *)scs_calloc(cone_boundaries_len, sizeof(scs_int));
/* cones that can be scaled independently */
b[count] = k->z + k->l + k->bsize;
count += 1; /* started at 0 now move to first entry */
for (i = 0; i < k->qsize; ++i) {
b[count + i] = k->q[i];
}
count += k->qsize;
for (i = 0; i < k->ssize; ++i) {
s_cone_sz = get_sd_cone_size(k->s[i]);
b[count + i] = s_cone_sz;
}
count += k->ssize; /* add ssize here not ssize * (ssize + 1) / 2 */
/* exp cones */
for (i = 0; i < k->ep + k->ed; ++i) {
b[count + i] = 3;
}
count += k->ep + k->ed;
/* power cones */
for (i = 0; i < k->psize; ++i) {
b[count + i] = 3;
}
count += k->psize;
/* other cones */
c->cone_boundaries = b;
c->cone_boundaries_len = cone_boundaries_len;
}
static scs_int get_full_cone_dims(const ScsCone *k) {
scs_int i, c = k->z + k->l + k->bsize;
if (k->qsize) {
for (i = 0; i < k->qsize; ++i) {
c += k->q[i];
}
}
if (k->ssize) {
for (i = 0; i < k->ssize; ++i) {
c += get_sd_cone_size(k->s[i]);
}
}
if (k->ed) {
c += 3 * k->ed;
}
if (k->ep) {
c += 3 * k->ep;
}
if (k->psize) {
c += 3 * k->psize;
}
return c;
}
scs_int SCS(validate_cones)(const ScsData *d, const ScsCone *k) {
scs_int i;
if (get_full_cone_dims(k) != d->m) {
scs_printf("cone dimensions %li not equal to num rows in A = m = %li\n",
(long)get_full_cone_dims(k), (long)d->m);
return -1;
}
if (k->z && k->z < 0) {
scs_printf("free cone dimension error\n");
return -1;
}
if (k->l && k->l < 0) {
scs_printf("lp cone dimension error\n");
return -1;
}
if (k->bsize) {
if (k->bsize < 0) {
scs_printf("box cone dimension error\n");
return -1;
}
for (i = 0; i < k->bsize - 1; ++i) {
if (k->bl[i] > k->bu[i]) {
scs_printf("infeasible: box lower bound larger than upper bound\n");
return -1;
}
}
}
if (k->qsize && k->q) {
if (k->qsize < 0) {
scs_printf("soc cone dimension error\n");
return -1;
}
for (i = 0; i < k->qsize; ++i) {
if (k->q[i] < 0) {
scs_printf("soc cone dimension error\n");
return -1;
}
}
}
if (k->ssize && k->s) {
if (k->ssize < 0) {
scs_printf("sd cone dimension error\n");
return -1;
}
for (i = 0; i < k->ssize; ++i) {
if (k->s[i] < 0) {
scs_printf("sd cone dimension error\n");
return -1;
}
}
}
if (k->ed && k->ed < 0) {
scs_printf("ep cone dimension error\n");
return -1;
}
if (k->ep && k->ep < 0) {
scs_printf("ed cone dimension error\n");
return -1;
}
if (k->psize && k->p) {
if (k->psize < 0) {
scs_printf("power cone dimension error\n");
return -1;
}
for (i = 0; i < k->psize; ++i) {
if (k->p[i] < -1 || k->p[i] > 1) {
scs_printf("power cone error, values must be in [-1,1]\n");
return -1;
}
}
}
return 0;
}
void SCS(finish_cone)(ScsConeWork *c) {
#ifdef USE_LAPACK
if (c->Xs) {
scs_free(c->Xs);
}
if (c->Z) {
scs_free(c->Z);
}
if (c->e) {
scs_free(c->e);
}
if (c->work) {
scs_free(c->work);
}
#endif
if (c->cone_boundaries) {
scs_free(c->cone_boundaries);
}
if (c->s) {
scs_free(c->s);
}
if (c) {
scs_free(c);
}
}
char *SCS(get_cone_header)(const ScsCone *k) {
char *tmp = (char *)scs_malloc(512); /* sizeof(char) = 1 */
scs_int i, soc_vars, sd_vars;
sprintf(tmp, "cones: ");
if (k->z) {
sprintf(tmp + strlen(tmp), "\t z: primal zero / dual free vars: %li\n",
(long)k->z);
}
if (k->l) {
sprintf(tmp + strlen(tmp), "\t l: linear vars: %li\n", (long)k->l);
}
if (k->bsize) {
sprintf(tmp + strlen(tmp), "\t b: box cone vars: %li\n", (long)(k->bsize));
}
soc_vars = 0;
if (k->qsize && k->q) {
for (i = 0; i < k->qsize; i++) {
soc_vars += k->q[i];
}
sprintf(tmp + strlen(tmp), "\t q: soc vars: %li, qsize: %li\n",
(long)soc_vars, (long)k->qsize);
}
sd_vars = 0;
if (k->ssize && k->s) {
for (i = 0; i < k->ssize; i++) {
sd_vars += get_sd_cone_size(k->s[i]);
}
sprintf(tmp + strlen(tmp), "\t s: psd vars: %li, ssize: %li\n",
(long)sd_vars, (long)k->ssize);
}
if (k->ep || k->ed) {
sprintf(tmp + strlen(tmp), "\t e: exp vars: %li, dual exp vars: %li\n",
(long)(3 * k->ep), (long)(3 * k->ed));
}
if (k->psize && k->p) {
sprintf(tmp + strlen(tmp), "\t p: primal + dual power vars: %li\n",
(long)(3 * k->psize));
}
return tmp;
}
static scs_int set_up_sd_cone_work_space(ScsConeWork *c, const ScsCone *k) {
scs_int i;
#ifdef USE_LAPACK
blas_int n_max = 1;
blas_int neg_one = -1;
blas_int info = 0;
scs_float wkopt = 0.0;
#if VERBOSITY > 0
#define _STR_EXPAND(tok) #tok
#define _STR(tok) _STR_EXPAND(tok)
scs_printf("BLAS(func) = '%s'\n", _STR(BLAS(func)));
#endif
/* eigenvector decomp workspace */
for (i = 0; i < k->ssize; ++i) {
if (k->s[i] > n_max) {
n_max = (blas_int)k->s[i];
}
}
c->Xs = (scs_float *)scs_calloc(n_max * n_max, sizeof(scs_float));
c->Z = (scs_float *)scs_calloc(n_max * n_max, sizeof(scs_float));
c->e = (scs_float *)scs_calloc(n_max, sizeof(scs_float));
/* workspace query */
BLAS(syev)
("Vectors", "Lower", &n_max, c->Xs, &n_max, SCS_NULL, &wkopt, &neg_one,
&info);
if (info != 0) {
scs_printf("FATAL: syev workspace query failure, info = %li\n", (long)info);
return -1;
}
c->lwork = (blas_int)(wkopt + 1); /* +1 for int casting safety */
c->work = (scs_float *)scs_calloc(c->lwork, sizeof(scs_float));
if (!c->Xs || !c->Z || !c->e || !c->work) {
return -1;
}
return 0;
#else
for (i = 0; i < k->ssize; i++) {
if (k->s[i] > 1) {
scs_printf(
"FATAL: Cannot solve SDPs without linked blas+lapack libraries\n");
scs_printf(
"Install blas+lapack and re-compile SCS with blas+lapack library "
"locations\n");
return -1;
}
}
return 0;
#endif
}
/* size of X is get_sd_cone_size(n) */
static scs_int proj_semi_definite_cone(scs_float *X, const scs_int n,
ScsConeWork *c) {
/* project onto the positive semi-definite cone */
#ifdef USE_LAPACK
scs_int i, first_idx;
blas_int nb = (blas_int)n;
blas_int ncols_z;
blas_int nb_plus_one = (blas_int)(n + 1);
blas_int one_int = 1;
scs_float zero = 0., one = 1.;
scs_float sqrt2 = SQRTF(2.0);
scs_float sqrt2_inv = 1.0 / sqrt2;
scs_float *Xs = c->Xs;
scs_float *Z = c->Z;
scs_float *e = c->e;
scs_float *work = c->work;
blas_int lwork = c->lwork;
blas_int info = 0;
scs_float sq_eig_pos;
#endif
if (n == 0) {
return 0;
}
if (n == 1) {
X[0] = MAX(X[0], 0.);
return 0;
}
#ifdef USE_LAPACK
/* copy lower triangular matrix into full matrix */
for (i = 0; i < n; ++i) {
memcpy(&(Xs[i * (n + 1)]), &(X[i * n - ((i - 1) * i) / 2]),
(n - i) * sizeof(scs_float));
}
/*
rescale so projection works, and matrix norm preserved
see http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf pg 3
*/
/* scale diags by sqrt(2) */
BLAS(scal)(&nb, &sqrt2, Xs, &nb_plus_one); /* not n_squared */
/* Solve eigenproblem, reuse workspaces */
BLAS(syev)("Vectors", "Lower", &nb, Xs, &nb, e, work, &lwork, &info);
if (info != 0) {
scs_printf("WARN: LAPACK syev error, info = %i\n", (int)info);
if (info < 0) {
return info;
}
}
first_idx = -1;
/* e is eigvals in ascending order, find first entry > 0 */
for (i = 0; i < n; ++i) {
if (e[i] > 0) {
first_idx = i;
break;
}
}
if (first_idx == -1) {
/* there are no positive eigenvalues, set X to 0 and return */
memset(X, 0, sizeof(scs_float) * get_sd_cone_size(n));
return 0;
}
/* Z is matrix of eigenvectors with positive eigenvalues */
memcpy(Z, &Xs[first_idx * n], sizeof(scs_float) * n * (n - first_idx));
/* scale Z by sqrt(eig) */
for (i = first_idx; i < n; ++i) {
sq_eig_pos = SQRTF(e[i]);
BLAS(scal)(&nb, &sq_eig_pos, &Z[(i - first_idx) * n], &one_int);
}
/* Xs = Z Z' = V E V' */
ncols_z = (blas_int)(n - first_idx);
BLAS(syrk)("Lower", "NoTrans", &nb, &ncols_z, &one, Z, &nb, &zero, Xs, &nb);
/* undo rescaling: scale diags by 1/sqrt(2) */
BLAS(scal)(&nb, &sqrt2_inv, Xs, &nb_plus_one); /* not n_squared */
/* extract just lower triangular matrix */
for (i = 0; i < n; ++i) {
memcpy(&(X[i * n - ((i - 1) * i) / 2]), &(Xs[i * (n + 1)]),
(n - i) * sizeof(scs_float));
}
return 0;
#else
scs_printf("FAILURE: solving SDP but no blas/lapack libraries were found!\n");
scs_printf("SCS will return nonsense!\n");
SCS(scale_array)(X, NAN, n);
return -1;
#endif
}
static scs_float pow_calc_x(scs_float r, scs_float xh, scs_float rh,
scs_float a) {
scs_float x = 0.5 * (xh + SQRTF(xh * xh + 4 * a * (rh - r) * r));
return MAX(x, 1e-12);
}
static scs_float pow_calcdxdr(scs_float x, scs_float xh, scs_float rh,
scs_float r, scs_float a) {
return a * (rh - 2 * r) / (2 * x - xh);
}
static scs_float pow_calc_f(scs_float x, scs_float y, scs_float r,
scs_float a) {
return POWF(x, a) * POWF(y, (1 - a)) - r;
}
static scs_float pow_calc_fp(scs_float x, scs_float y, scs_float dxdr,
scs_float dydr, scs_float a) {
return POWF(x, a) * POWF(y, (1 - a)) * (a * dxdr / x + (1 - a) * dydr / y) -
1;
}
/*
* Routine to scale the limits of the box cone by the scaling diagonal mat D > 0
*
* want (t, s) \in K <==> (t', s') \in K'
*
* (t', s') = (d0 * t, D s) (overloading D to mean D[1:])
* (up to scalar scaling factor which we can ignore due to conic prooperty)
*
* K = { (t, s) | t * l <= s <= t * u, t >= 0 } =>
* { (t, s) | d0 * t * D l / d0 <= D s <= d0 * t D u / d0, t >= 0 } =>
* { (t', s') | t' * l' <= s' <= t' u', t >= 0 } = K'
* where l' = D l / d0, u' = D u / d0.
*/
static void normalize_box_cone(ScsCone *k, scs_float *D, scs_int bsize) {
scs_int j;
for (j = 0; j < bsize - 1; j++) {
if (k->bu[j] >= MAX_BOX_VAL) {
k->bu[j] = INFINITY;
} else {
k->bu[j] = D ? D[j + 1] * k->bu[j] / D[0] : k->bu[j];
}
if (k->bl[j] <= -MAX_BOX_VAL) {
k->bl[j] = -INFINITY;
} else {
k->bl[j] = D ? D[j + 1] * k->bl[j] / D[0] : k->bl[j];
}
}
}
/* Project onto { (t, s) | t * l <= s <= t * u, t >= 0 }, Newton's method on t
tx = [t; s], total length = bsize, under Euclidean metric 1/r_box.
*/
static scs_float proj_box_cone(scs_float *tx, const scs_float *bl,
const scs_float *bu, scs_int bsize,
scs_float t_warm_start, scs_float *r_box) {
scs_float *x, gt, ht, t_prev, t = t_warm_start;
scs_float rho_t = 1, *rho = SCS_NULL, r;
scs_int iter, j;
if (bsize == 1) { /* special case */
tx[0] = MAX(tx[0], 0.0);
return tx[0];
}
x = &(tx[1]);
if (r_box) {
rho_t = 1.0 / r_box[0];
rho = &(r_box[1]);
}
/* should only require about 5 or so iterations, 1 or 2 if warm-started */
for (iter = 0; iter < BOX_CONE_MAX_ITERS; iter++) {
t_prev = t;
gt = rho_t * (t - tx[0]); /* gradient */
ht = rho_t; /* hessian */
for (j = 0; j < bsize - 1; j++) {
r = rho ? 1.0 / rho[j] : 1.;
if (x[j] > t * bu[j]) {
gt += r * (t * bu[j] - x[j]) * bu[j]; /* gradient */
ht += r * bu[j] * bu[j]; /* hessian */
} else if (x[j] < t * bl[j]) {
gt += r * (t * bl[j] - x[j]) * bl[j]; /* gradient */
ht += r * bl[j] * bl[j]; /* hessian */
}
}
t = MAX(t - gt / MAX(ht, 1e-8), 0.); /* newton step */
#if VERBOSITY > 3
scs_printf("iter %i, t_new %1.3e, t_prev %1.3e, gt %1.3e, ht %1.3e\n", iter,
t, t_prev, gt, ht);
scs_printf("ABS(gt / (ht + 1e-6)) %.4e, ABS(t - t_prev) %.4e\n",
ABS(gt / (ht + 1e-6)), ABS(t - t_prev));
#endif
/* TODO: sometimes this check can fail (ie, declare convergence before it
* should) if ht is very large, which can happen with some pathological
* problems.
*/
if (ABS(gt / MAX(ht, 1e-6)) < 1e-12 * MAX(t, 1.) ||
ABS(t - t_prev) < 1e-11 * MAX(t, 1.)) {
break;
}
}
if (iter == BOX_CONE_MAX_ITERS) {
scs_printf("warning: box cone proj hit maximum %i iters\n", (int)iter);
}
for (j = 0; j < bsize - 1; j++) {
if (x[j] > t * bu[j]) {
x[j] = t * bu[j];
} else if (x[j] < t * bl[j]) {
x[j] = t * bl[j];
}
/* x[j] unchanged otherwise */
}
tx[0] = t;
#if VERBOSITY > 3
scs_printf("box cone iters %i\n", (int)iter + 1);
#endif
return t;
}
/* project onto SOC of size q*/
static void proj_soc(scs_float *x, scs_int q) {
if (q == 0) {
return;
}
if (q == 1) {
x[0] = MAX(x[0], 0.);
return;
}
scs_float v1 = x[0];
scs_float s = SCS(norm_2)(&(x[1]), q - 1);
scs_float alpha = (s + v1) / 2.0;
if (s <= v1) {
return;
} else if (s <= -v1) {
memset(&(x[0]), 0, q * sizeof(scs_float));
} else {
x[0] = alpha;
SCS(scale_array)(&(x[1]), alpha / s, q - 1);
}
}
static void proj_power_cone(scs_float *v, scs_float a) {
scs_float xh = v[0], yh = v[1], rh = ABS(v[2]);
scs_float x = 0.0, y = 0.0, r;
scs_int i;
/* v in K_a */
if (xh >= 0 && yh >= 0 &&
POW_CONE_TOL + POWF(xh, a) * POWF(yh, (1 - a)) >= rh) {
return;
}
/* -v in K_a^* */
if (xh <= 0 && yh <= 0 &&
POW_CONE_TOL + POWF(-xh, a) * POWF(-yh, 1 - a) >=
rh * POWF(a, a) * POWF(1 - a, 1 - a)) {
v[0] = v[1] = v[2] = 0;
return;
}
r = rh / 2;
for (i = 0; i < POW_CONE_MAX_ITERS; ++i) {
scs_float f, fp, dxdr, dydr;
x = pow_calc_x(r, xh, rh, a);
y = pow_calc_x(r, yh, rh, 1 - a);
f = pow_calc_f(x, y, r, a);
if (ABS(f) < POW_CONE_TOL) {
break;
}
dxdr = pow_calcdxdr(x, xh, rh, r, a);
dydr = pow_calcdxdr(y, yh, rh, r, (1 - a));
fp = pow_calc_fp(x, y, dxdr, dydr, a);
r = MAX(r - f / fp, 0);
r = MIN(r, rh);
}
v[0] = x;
v[1] = y;
v[2] = (v[2] < 0) ? -(r) : (r);
}
/* project onto the primal K cone in the paper */
/* the r_y vector determines the INVERSE metric, ie, project under the
* diag(r_y)^-1 norm.
*/
static scs_int proj_cone(scs_float *x, const ScsCone *k, ScsConeWork *c,
scs_int normalize, scs_float *r_y) {
scs_int i, status;
scs_int count = 0;
scs_float *r_box = SCS_NULL;
if (k->z) { /* doesn't use r_y */
/* project onto primal zero / dual free cone */
memset(x, 0, k->z * sizeof(scs_float));
count += k->z;
}
if (k->l) { /* doesn't use r_y */
/* project onto positive orthant */
for (i = count; i < count + k->l; ++i) {
x[i] = MAX(x[i], 0.0);
}
count += k->l;
}
if (k->bsize) { /* DOES use r_y */
if (r_y) {
r_box = &(r_y[count]);
}
/* project onto box cone */
c->box_t_warm_start = proj_box_cone(&(x[count]), k->bl, k->bu, k->bsize,
c->box_t_warm_start, r_box);
count += k->bsize; /* since b = (t,s), len(s) = bsize - 1 */
}
if (k->qsize && k->q) { /* doesn't use r_y */
/* project onto second-order cones */
for (i = 0; i < k->qsize; ++i) {
proj_soc(&(x[count]), k->q[i]);
count += k->q[i];
}
}
if (k->ssize && k->s) { /* doesn't use r_y */
/* project onto PSD cones */
for (i = 0; i < k->ssize; ++i) {
status = proj_semi_definite_cone(&(x[count]), k->s[i], c);
if (status < 0) {
return status;
}
count += get_sd_cone_size(k->s[i]);
}
}
if (k->ep || k->ed) { /* doesn't use r_y */
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (i = 0; i < k->ep + k->ed; ++i) {
/* provided in exp_cone.c */
SCS(proj_pd_exp_cone)(&(x[count + 3 * i]), i < k->ep);
}
count += 3 * (k->ep + k->ed);
}
if (k->psize && k->p) { /* doesn't use r_y */
scs_float v[3];
scs_int idx;
/* don't use openmp for power cone
ifdef _OPENMP
pragma omp parallel for private(v, idx)
endif
*/
for (i = 0; i < k->psize; ++i) { /* doesn't use r_y */
idx = count + 3 * i;
if (k->p[i] >= 0) {
/* primal power cone */
proj_power_cone(&(x[idx]), k->p[i]);
} else {
/* dual power cone, using Moreau */
v[0] = -x[idx];
v[1] = -x[idx + 1];
v[2] = -x[idx + 2];
proj_power_cone(v, -k->p[i]);
x[idx] += v[0];
x[idx + 1] += v[1];
x[idx + 2] += v[2];
}
}
count += 3 * k->psize;
}
/* project onto OTHER cones */
return 0;
}
ScsConeWork *SCS(init_cone)(ScsCone *k, scs_int m) {
ScsConeWork *c = (ScsConeWork *)scs_calloc(1, sizeof(ScsConeWork));
c->k = k;
c->m = m;
c->scaled_cones = 0;
set_cone_boundaries(k, c);
c->s = (scs_float *)scs_calloc(m, sizeof(scs_float));
if (k->ssize && k->s) {
if (set_up_sd_cone_work_space(c, k) < 0) {
SCS(finish_cone)(c);
return SCS_NULL;
}
}
return c;
}
void scale_box_cone(ScsCone *k, ScsConeWork *c, ScsScaling *scal) {
if (k->bsize && k->bu && k->bl) {
c->box_t_warm_start = 1.;
if (scal) {
/* also does some sanitizing */
normalize_box_cone(k, &(scal->D[k->z + k->l]), k->bsize);
}
}
}
/* Outward facing cone projection routine, performs projection in-place.
If normalize > 0 then will use normalized (equilibrated) cones if applicable.
Moreau decomposition for R-norm projections:
`x + R^{-1} \Pi_{C^*}^{R^{-1}} ( - R x ) = \Pi_C^R ( x )`
where \Pi^R_C is the projection onto C under the R-norm:
`||x||_R = \sqrt{x ' R x}`.
*/
scs_int SCS(proj_dual_cone)(scs_float *x, ScsConeWork *c, ScsScaling *scal,
scs_float *r_y) {
scs_int status, i;
ScsCone *k = c->k;
if (!c->scaled_cones) {
scale_box_cone(k, c, scal);
c->scaled_cones = 1;
}
/* copy s = x */
memcpy(c->s, x, c->m * sizeof(scs_float));
/* x -> - Rx */
for (i = 0; i < c->m; ++i) {
x[i] *= r_y ? -r_y[i] : -1;
}
/* project -x onto cone, x -> \Pi_{C^*}^{R^{-1}}(-x) under r_y metric */
status = proj_cone(x, k, c, scal ? 1 : 0, r_y);
/* return x + R^{-1} \Pi_{C^*}^{R^{-1}} ( -x ) */
for (i = 0; i < c->m; ++i) {
if (r_y) {
x[i] = x[i] / r_y[i] + c->s[i];
} else {
x[i] += c->s[i];
}
}
return status;
}