-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwarm_start.py
204 lines (183 loc) · 7.2 KB
/
warm_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import torch
import time
from torch_scatter import scatter, scatter_add
import argparse
def create_data(N,k):
node_list = np.array([np.random.rand(N),np.random.rand(N)]).reshape((N,2))
link_list = []
for i in range(N):
distance = np.array([np.linalg.norm(node_list[i]-node_list[j]) for j in range(N)])
neighbors = np.argsort(distance)[1:(k+1)]
link = np.zeros((N,k))
link[i,:] = -1
link[neighbors,np.array(range(k))] = 1
link2 = np.zeros((N,k))
link2[i,:] = 1
link2[neighbors,np.array(range(k))] = -1
link_list.append(link)
link_list.append(link2)
A = np.hstack(link_list)
A = np.unique(A,axis=1)
p = np.random.permutation(A.shape[1])
c = np.exp(np.random.rand(A.shape[1])*(np.log(5)-np.log(0.5))+np.log(0.5))
return A[:,p], c
def project(F,c):
sorted, ind = torch.sort(-F.T)
mat1 = -sorted; del sorted
mat2 = (torch.cumsum(mat1,dim=1)-c)/(torch.arange(mat1.shape[1]).to(F.device)+1)
mat3_1 = torch.where(mat1-mat2>0,mat1-mat2,torch.inf)
mat3_1ind = torch.min(mat3_1,1)[1].unsqueeze(-1); del mat3_1
mat3 = torch.gather(mat2,1,mat3_1ind); del mat2
mat4 = mat3.expand(F.shape[1],F.shape[0])
mat5 = torch.where(mat1-mat4>0,mat1-mat4,0)
F_project = scatter(mat5,ind,1).T
F_plus = torch.maximum(F,torch.zeros_like(F))
col_ind = torch.where(F_plus.sum(dim=0)<=c[:,0])[0]
F_project[:,col_ind] = F_plus[:,col_ind]
return F_project
def prox_util(Y,beta_weight):
n1 = (Y - (Y**2 + 4 * beta_weight)**0.5)/2
n1.fill_diagonal_(0)
return n1
def eval_obj(F,pos_ind,neg_ind,c,weight):
f1 = (F>=-1e-4).all()
f2 = (F.sum(dim=0)<=c+1e-4).all()
f3 = scatter_add(F,neg_ind,1)-scatter_add(F,pos_ind,1)
f3.fill_diagonal_(1)
f4 = (f3>0).all()
if not (f1 and f2 and f4):
return torch.inf
return ((-weight*torch.log(f3)).sum()).item()
def compute_r(F,pre_proj,neg_ind,pos_ind,weight):
minusFAt = scatter_add(F,neg_ind,1) - scatter_add(F,pos_ind,1)
minusFAt.fill_diagonal_(1)
if not (minusFAt>0).all():
return torch.Tensor([torch.inf])
inv_minusFAt = (1/minusFAt)*weight
inv_minusFAt.fill_diagonal_(0)
nabla_u = torch.gather(inv_minusFAt,1,pos_ind.expand(F.shape))-\
torch.gather(inv_minusFAt,1,neg_ind.expand(F.shape))
v = (nabla_u**2).sum()
s = ((F-pre_proj)**2).sum()
p = ((F-pre_proj)*nabla_u).sum()
r = v-p**2/s if (p>=0 and s>0) else v
r = r/(F.shape[0]*F.shape[1])
return r
def weight_update(F,Y,pweight,eps_zero,eta,F_init,Y_init):
del_F = ((F-F_init)**2).sum()**0.5
del_Y = ((Y-Y_init)**2).sum()**0.5
if del_F>eps_zero and del_Y>eps_zero:
pweight = torch.exp(0.5*torch.log(del_Y/del_F)+\
0.5*torch.log(torch.Tensor([pweight])).item())
return eta/pweight, eta*pweight, pweight
def perturb(weight,ratio):
ret = weight + (2*(torch.rand((weight.shape))<0.5)-1).to(device)*(weight*ratio)
return ret
if __name__ == "__main__":
device = 'cuda:0'
parser = argparse.ArgumentParser()
parser.add_argument('--n', type=int)
parser.add_argument('--q', type=int)
parser.add_argument('--wu_it', type=int, default=100, required=False)
parser.add_argument('--nu', type=float, default=0.1, required=False)
parser.add_argument('--seed', type=int, default=0, required=False)
parser.add_argument('--max_iter', type=int, default=np.inf, required=False)
parser.add_argument('--float64', action='store_true')
args = parser.parse_args()
# create data
np.random.seed(args.seed)
torch.manual_seed(args.seed)
n = args.n; q = args.q
A, c = create_data(n,q)
weight = np.exp(np.random.rand(n,n)*(np.log(3)-np.log(0.3))+np.log(0.3))
m = A.shape[1]
print(f'{n=},{q=},{m=}')
# PDHG algorithm
print(f'START PDHG SOLVE')
A = torch.Tensor(A)
pos_ind = torch.where(torch.Tensor(A).T==1)[1].to(device)
neg_ind = torch.where(torch.Tensor(A).T==-1)[1].to(device)
del A
c = torch.Tensor(c).to(device)
weight = torch.Tensor(weight).to(device)
c_exp = c.expand(n, m).T
F_half = torch.zeros((n,m)).to(device)
Y = -torch.ones((n,n)).to(device)
Y.fill_diagonal_(0)
if args.float64:
print('using float64')
A = A.double()
c = c.double()
c_exp = c.expand(n, m).T
weight = weight.double()
F_half = F_half.double()
Y = Y.double()
count = torch.Tensor([torch.where(pos_ind==i)[0].shape[0] + \
torch.where(neg_ind==i)[0].shape[0] for i in range(n)])
d_max = torch.max(count)
eta = 1/(2*d_max)**0.5
pweight = 1
eps_zero = 1e-5
F_Y_0 = [F_half,Y]
alpha = eta/pweight
beta = eta*pweight
overrelax_rho = 1.9
wu_it = args.wu_it
weight_original = weight.clone()
# perturb log weight a
weight = perturb(weight_original,args.nu)
print(f'weight perturb ratio: {args.nu}')
MAX_ITER = args.max_iter
it = 0
# warm up solve
while it < MAX_ITER:
alpha_YA = torch.gather(alpha * Y,1,pos_ind.expand(n, m))-\
torch.gather(alpha * Y,1,neg_ind.expand(n, m))
F_prev = F_half.clone()
F_half_hat = project(F_half + alpha_YA, c_exp)
F_new = 2*F_half_hat - F_half
F_At = scatter_add(beta * F_new,pos_ind,1)-scatter_add(beta * F_new,neg_ind,1)
Y_hat = prox_util(Y - F_At, beta * weight)
F_half = overrelax_rho*F_half_hat + (1-overrelax_rho)*F_half
Y = overrelax_rho * Y_hat + (1-overrelax_rho)*Y
it += 1
if it%10 == 0:
r = compute_r(F_half_hat,F_prev + alpha_YA,neg_ind,pos_ind,weight)
residual = r.item()/(n*(n-1))
print(f'warm up solve: {it=},{residual=}')
if r/(n*(n-1))<torch.inf:
break
if it%wu_it == 0:
alpha, beta, pweight = weight_update(F_half,Y,pweight,
eps_zero,eta,F_Y_0[0],F_Y_0[1])
F_Y_0 = [F_half,Y]
# true solve
it = 0
weight = weight_original.clone()
torch.cuda.synchronize()
start_time = time.time() # start timing
F_Y_0 = [F_half,Y]
while it < MAX_ITER:
alpha_YA = torch.gather(alpha * Y,1,pos_ind.expand(n, m))-\
torch.gather(alpha * Y,1,neg_ind.expand(n, m))
F_prev = F_half.clone()
F_half_hat = project(F_half + alpha_YA, c_exp)
F_new = 2*F_half_hat-F_half
F_At = scatter_add(beta * F_new,pos_ind,1)-scatter_add(beta * F_new,neg_ind,1)
Y_hat = prox_util(Y-F_At, beta * weight)
F_half = overrelax_rho*F_half_hat + (1-overrelax_rho)*F_half
Y = overrelax_rho * Y_hat + (1-overrelax_rho)*Y
it += 1
if it%10 == 0:
r = compute_r(F_half_hat,F_prev+alpha_YA,neg_ind,pos_ind,weight)
residual = r.item()/(n*(n-1))
print(f'true solve: {it=},{residual=}')
if r/(n*(n-1))<1e-2:
break
if it%wu_it == 0:
alpha, beta, pweight = weight_update(F_half,Y,pweight,
eps_zero,eta,F_Y_0[0],F_Y_0[1])
F_Y_0 = [F_half,Y]
torch.cuda.synchronize()
print('pdmcf (with warm start) time:', time.time()-start_time)