-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtdnn.py
78 lines (65 loc) · 2.56 KB
/
tdnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn as nn
import torch.nn.functional as F
class TDNN(nn.Module):
def __init__(
self,
input_dim=23,
output_dim=512,
context_size=5,
stride=1,
dilation=1,
batch_norm=True,
dropout_p=0.0
):
'''
TDNN as defined by https://www.danielpovey.com/files/2015_interspeech_multisplice.pdf
Affine transformation not applied globally to all frames but smaller windows with local context
batch_norm: True to include batch normalisation after the non linearity
Context size and dilation determine the frames selected
(although context size is not really defined in the traditional sense)
For example:
context size 5 and dilation 1 is equivalent to [-2,-1,0,1,2]
context size 3 and dilation 2 is equivalent to [-2, 0, 2]
context size 1 and dilation 1 is equivalent to [0]
'''
super(TDNN, self).__init__()
self.context_size = context_size
self.stride = stride
self.input_dim = input_dim
self.output_dim = output_dim
self.dilation = dilation
self.dropout_p = dropout_p
self.batch_norm = batch_norm
self.kernel = nn.Linear(input_dim*context_size, output_dim)
self.nonlinearity = nn.ReLU()
if self.batch_norm:
self.bn = nn.BatchNorm1d(output_dim)
if self.dropout_p:
self.drop = nn.Dropout(p=self.dropout_p)
def forward(self, x):
'''
input: size (batch, seq_len, input_features)
outpu: size (batch, new_seq_len, output_features)
'''
_, _, d = x.shape
assert (d == self.input_dim), 'Input dimension was wrong. Expected ({}), got ({})'.format(self.input_dim, d)
x = x.unsqueeze(1)
# Unfold input into smaller temporal contexts
x = F.unfold(
x,
(self.context_size, self.input_dim),
stride=(1,self.input_dim),
dilation=(self.dilation,1)
)
# N, output_dim*context_size, new_t = x.shape
x = x.transpose(1,2)
x = self.kernel(x)
x = self.nonlinearity(x)
if self.dropout_p:
x = self.drop(x)
if self.batch_norm:
x = x.transpose(1,2)
x = self.bn(x)
x = x.transpose(1,2)
return x