-
Notifications
You must be signed in to change notification settings - Fork 48
/
pulid.py
500 lines (413 loc) · 19.6 KB
/
pulid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import torch
from torch import nn
import torchvision.transforms as T
import torch.nn.functional as F
import os
import math
import folder_paths
import comfy.utils
from insightface.app import FaceAnalysis
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from comfy.ldm.modules.attention import optimized_attention
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .encoders import IDEncoder
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid")
if "pulid" not in folder_paths.folder_names_and_paths:
current_paths = [MODELS_DIR]
else:
current_paths, _ = folder_paths.folder_names_and_paths["pulid"]
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions)
class PulidModel(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
self.image_proj_model = self.init_id_adapter()
self.image_proj_model.load_state_dict(model["image_proj"])
self.ip_layers = To_KV(model["ip_adapter"])
def init_id_adapter(self):
image_proj_model = IDEncoder()
return image_proj_model
def get_image_embeds(self, face_embed, clip_embeds):
embeds = self.image_proj_model(face_embed, clip_embeds)
return embeds
class To_KV(nn.Module):
def __init__(self, state_dict):
super().__init__()
self.to_kvs = nn.ModuleDict()
for key, value in state_dict.items():
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value
def tensor_to_image(tensor):
image = tensor.mul(255).clamp(0, 255).byte().cpu()
image = image[..., [2, 1, 0]].numpy()
return image
def image_to_tensor(image):
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
tensor = tensor[..., [2, 1, 0]]
return tensor
def tensor_to_size(source, dest_size):
if isinstance(dest_size, torch.Tensor):
dest_size = dest_size.shape[0]
source_size = source.shape[0]
if source_size < dest_size:
shape = [dest_size - source_size] + [1]*(source.dim()-1)
source = torch.cat((source, source[-1:].repeat(shape)), dim=0)
elif source_size > dest_size:
source = source[:dest_size]
return source
def set_model_patch_replace(model, patch_kwargs, key):
to = model.model_options["transformer_options"].copy()
if "patches_replace" not in to:
to["patches_replace"] = {}
else:
to["patches_replace"] = to["patches_replace"].copy()
if "attn2" not in to["patches_replace"]:
to["patches_replace"]["attn2"] = {}
else:
to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy()
if key not in to["patches_replace"]["attn2"]:
to["patches_replace"]["attn2"][key] = Attn2Replace(pulid_attention, **patch_kwargs)
model.model_options["transformer_options"] = to
else:
to["patches_replace"]["attn2"][key].add(pulid_attention, **patch_kwargs)
class Attn2Replace:
def __init__(self, callback=None, **kwargs):
self.callback = [callback]
self.kwargs = [kwargs]
def add(self, callback, **kwargs):
self.callback.append(callback)
self.kwargs.append(kwargs)
for key, value in kwargs.items():
setattr(self, key, value)
def __call__(self, q, k, v, extra_options):
dtype = q.dtype
out = optimized_attention(q, k, v, extra_options["n_heads"])
sigma = extra_options["sigmas"].detach().cpu()[0].item() if 'sigmas' in extra_options else 999999999.9
for i, callback in enumerate(self.callback):
if sigma <= self.kwargs[i]["sigma_start"] and sigma >= self.kwargs[i]["sigma_end"]:
out = out + callback(out, q, k, v, extra_options, **self.kwargs[i])
return out.to(dtype=dtype)
def pulid_attention(out, q, k, v, extra_options, module_key='', pulid=None, cond=None, uncond=None, weight=1.0, ortho=False, ortho_v2=False, mask=None, **kwargs):
k_key = module_key + "_to_k_ip"
v_key = module_key + "_to_v_ip"
dtype = q.dtype
seq_len = q.shape[1]
cond_or_uncond = extra_options["cond_or_uncond"]
b = q.shape[0]
batch_prompt = b // len(cond_or_uncond)
_, _, oh, ow = extra_options["original_shape"]
#conds = torch.cat([uncond.repeat(batch_prompt, 1, 1), cond.repeat(batch_prompt, 1, 1)], dim=0)
#zero_tensor = torch.zeros((conds.size(0), num_zero, conds.size(-1)), dtype=conds.dtype, device=conds.device)
#conds = torch.cat([conds, zero_tensor], dim=1)
#ip_k = pulid.ip_layers.to_kvs[k_key](conds)
#ip_v = pulid.ip_layers.to_kvs[v_key](conds)
k_cond = pulid.ip_layers.to_kvs[k_key](cond).repeat(batch_prompt, 1, 1)
k_uncond = pulid.ip_layers.to_kvs[k_key](uncond).repeat(batch_prompt, 1, 1)
v_cond = pulid.ip_layers.to_kvs[v_key](cond).repeat(batch_prompt, 1, 1)
v_uncond = pulid.ip_layers.to_kvs[v_key](uncond).repeat(batch_prompt, 1, 1)
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
if ortho:
out = out.to(dtype=torch.float32)
out_ip = out_ip.to(dtype=torch.float32)
projection = (torch.sum((out * out_ip), dim=-2, keepdim=True) / torch.sum((out * out), dim=-2, keepdim=True) * out)
orthogonal = out_ip - projection
out_ip = weight * orthogonal
elif ortho_v2:
out = out.to(dtype=torch.float32)
out_ip = out_ip.to(dtype=torch.float32)
attn_map = q @ ip_k.transpose(-2, -1)
attn_mean = attn_map.softmax(dim=-1).mean(dim=1, keepdim=True)
attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True)
projection = (torch.sum((out * out_ip), dim=-2, keepdim=True) / torch.sum((out * out), dim=-2, keepdim=True) * out)
orthogonal = out_ip + (attn_mean - 1) * projection
out_ip = weight * orthogonal
else:
out_ip = out_ip * weight
if mask is not None:
mask_h = oh / math.sqrt(oh * ow / seq_len)
mask_h = int(mask_h) + int((seq_len % int(mask_h)) != 0)
mask_w = seq_len // mask_h
mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1)
mask = tensor_to_size(mask, batch_prompt)
mask = mask.repeat(len(cond_or_uncond), 1, 1)
mask = mask.view(mask.shape[0], -1, 1).repeat(1, 1, out.shape[2])
# covers cases where extreme aspect ratios can cause the mask to have a wrong size
mask_len = mask_h * mask_w
if mask_len < seq_len:
pad_len = seq_len - mask_len
pad1 = pad_len // 2
pad2 = pad_len - pad1
mask = F.pad(mask, (0, 0, pad1, pad2), value=0.0)
elif mask_len > seq_len:
crop_start = (mask_len - seq_len) // 2
mask = mask[:, crop_start:crop_start+seq_len, :]
out_ip = out_ip * mask
return out_ip.to(dtype=dtype)
def to_gray(img):
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
x = x.repeat(1, 3, 1, 1)
return x
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Nodes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class PulidModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pulid_file": (folder_paths.get_filename_list("pulid"), )}}
RETURN_TYPES = ("PULID",)
FUNCTION = "load_model"
CATEGORY = "pulid"
def load_model(self, pulid_file):
ckpt_path = folder_paths.get_full_path("pulid", pulid_file)
model = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if ckpt_path.lower().endswith(".safetensors"):
st_model = {"image_proj": {}, "ip_adapter": {}}
for key in model.keys():
if key.startswith("image_proj."):
st_model["image_proj"][key.replace("image_proj.", "")] = model[key]
elif key.startswith("ip_adapter."):
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
model = st_model
# Also initialize the model, takes longer to load but then it doesn't have to be done every time you change parameters in the apply node
model = PulidModel(model)
return (model,)
class PulidInsightFaceLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM", "CoreML"], ),
},
}
RETURN_TYPES = ("FACEANALYSIS",)
FUNCTION = "load_insightface"
CATEGORY = "pulid"
def load_insightface(self, provider):
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l
model.prepare(ctx_id=0, det_size=(640, 640))
return (model,)
class PulidEvaClipLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {},
}
RETURN_TYPES = ("EVA_CLIP",)
FUNCTION = "load_eva_clip"
CATEGORY = "pulid"
def load_eva_clip(self):
from .eva_clip.factory import create_model_and_transforms
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
model = model.visual
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
model["image_mean"] = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
model["image_std"] = (eva_transform_std,) * 3
return (model,)
class ApplyPulid:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"pulid": ("PULID", ),
"eva_clip": ("EVA_CLIP", ),
"face_analysis": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
"method": (["fidelity", "style", "neutral"],),
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
},
"optional": {
"attn_mask": ("MASK", ),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_pulid"
CATEGORY = "pulid"
def apply_pulid(self, model, pulid, eva_clip, face_analysis, image, weight, start_at, end_at, method=None, noise=0.0, fidelity=None, projection=None, attn_mask=None):
work_model = model.clone()
device = comfy.model_management.get_torch_device()
dtype = comfy.model_management.unet_dtype()
if dtype not in [torch.float32, torch.float16, torch.bfloat16]:
dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32
eva_clip.to(device, dtype=dtype)
pulid_model = pulid.to(device, dtype=dtype)
if attn_mask is not None:
if attn_mask.dim() > 3:
attn_mask = attn_mask.squeeze(-1)
elif attn_mask.dim() < 3:
attn_mask = attn_mask.unsqueeze(0)
attn_mask = attn_mask.to(device, dtype=dtype)
if method == "fidelity" or projection == "ortho_v2":
num_zero = 8
ortho = False
ortho_v2 = True
elif method == "style" or projection == "ortho":
num_zero = 16
ortho = True
ortho_v2 = False
else:
num_zero = 0
ortho = False
ortho_v2 = False
if fidelity is not None:
num_zero = fidelity
#face_analysis.det_model.input_size = (640,640)
image = tensor_to_image(image)
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
face_helper.face_parse = None
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
cond = []
uncond = []
for i in range(image.shape[0]):
# get insightface embeddings
iface_embeds = None
for size in [(size, size) for size in range(640, 256, -64)]:
face_analysis.det_model.input_size = size
face = face_analysis.get(image[i])
if face:
face = sorted(face, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
iface_embeds = torch.from_numpy(face.embedding).unsqueeze(0).to(device, dtype=dtype)
break
else:
# No face detected, skip this image
print('Warning: No face detected in image', i)
continue
# get eva_clip embeddings
face_helper.clean_all()
face_helper.read_image(image[i])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
# No face detected, skip this image
continue
face = face_helper.cropped_faces[0]
face = image_to_tensor(face).unsqueeze(0).permute(0,3,1,2).to(device)
parsing_out = face_helper.face_parse(T.functional.normalize(face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(face)
face_features_image = torch.where(bg, white_image, to_gray(face))
# apparently MPS only supports NEAREST interpolation?
face_features_image = T.functional.resize(face_features_image, eva_clip.image_size, T.InterpolationMode.BICUBIC if 'cuda' in device.type else T.InterpolationMode.NEAREST).to(device, dtype=dtype)
face_features_image = T.functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std)
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False)
id_cond_vit = id_cond_vit.to(device, dtype=dtype)
for idx in range(len(id_vit_hidden)):
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype)
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True))
# combine embeddings
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1)
if noise == 0:
id_uncond = torch.zeros_like(id_cond)
else:
id_uncond = torch.rand_like(id_cond) * noise
id_vit_hidden_uncond = []
for idx in range(len(id_vit_hidden)):
if noise == 0:
id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[idx]))
else:
id_vit_hidden_uncond.append(torch.rand_like(id_vit_hidden[idx]) * noise)
cond.append(pulid_model.get_image_embeds(id_cond, id_vit_hidden))
uncond.append(pulid_model.get_image_embeds(id_uncond, id_vit_hidden_uncond))
if not cond:
# No faces detected, return the original model
print("pulid warning: No faces detected in any of the given images, returning unmodified model.")
return (work_model,)
# average embeddings
cond = torch.cat(cond).to(device, dtype=dtype)
uncond = torch.cat(uncond).to(device, dtype=dtype)
if cond.shape[0] > 1:
cond = torch.mean(cond, dim=0, keepdim=True)
uncond = torch.mean(uncond, dim=0, keepdim=True)
if num_zero > 0:
if noise == 0:
zero_tensor = torch.zeros((cond.size(0), num_zero, cond.size(-1)), dtype=dtype, device=device)
else:
zero_tensor = torch.rand((cond.size(0), num_zero, cond.size(-1)), dtype=dtype, device=device) * noise
cond = torch.cat([cond, zero_tensor], dim=1)
uncond = torch.cat([uncond, zero_tensor], dim=1)
sigma_start = work_model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = work_model.get_model_object("model_sampling").percent_to_sigma(end_at)
patch_kwargs = {
"pulid": pulid_model,
"weight": weight,
"cond": cond,
"uncond": uncond,
"sigma_start": sigma_start,
"sigma_end": sigma_end,
"ortho": ortho,
"ortho_v2": ortho_v2,
"mask": attn_mask,
}
number = 0
for id in [4,5,7,8]: # id of input_blocks that have cross attention
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
number += 1
for id in range(6): # id of output_blocks that have cross attention
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
for index in block_indices:
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
number += 1
for index in range(10):
patch_kwargs["module_key"] = str(number*2+1)
set_model_patch_replace(work_model, patch_kwargs, ("middle", 1, index))
number += 1
return (work_model,)
class ApplyPulidAdvanced(ApplyPulid):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"pulid": ("PULID", ),
"eva_clip": ("EVA_CLIP", ),
"face_analysis": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
"projection": (["ortho_v2", "ortho", "none"],),
"fidelity": ("INT", {"default": 8, "min": 0, "max": 32, "step": 1 }),
"noise": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.1 }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
},
"optional": {
"attn_mask": ("MASK", ),
},
}
NODE_CLASS_MAPPINGS = {
"PulidModelLoader": PulidModelLoader,
"PulidInsightFaceLoader": PulidInsightFaceLoader,
"PulidEvaClipLoader": PulidEvaClipLoader,
"ApplyPulid": ApplyPulid,
"ApplyPulidAdvanced": ApplyPulidAdvanced,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PulidModelLoader": "Load PuLID Model",
"PulidInsightFaceLoader": "Load InsightFace (PuLID)",
"PulidEvaClipLoader": "Load Eva Clip (PuLID)",
"ApplyPulid": "Apply PuLID",
"ApplyPulidAdvanced": "Apply PuLID Advanced",
}