-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrace.ml
2208 lines (1866 loc) · 74.4 KB
/
trace.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(**************************************************************************)
(* *)
(* Cubicle *)
(* *)
(* Copyright (C) 2011-2014 *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* *)
(* This file is distributed under the terms of the Apache Software *)
(* License version 2.0 *)
(* *)
(**************************************************************************)
open Format
open Ast
open Types
open Options
module HSet = Hstring.HSet
module type S = sig
val certificate : t_system -> Node.t list -> unit
end
(* TODO : Add user invariants as axioms *)
let collect_types s =
let add = List.fold_left (fun acc g ->
let t_args, t_ret = Smt.Symbol.type_of g in
List.fold_left (fun acc t -> HSet.add t acc)
(HSet.add t_ret acc) t_args
) in
add (add HSet.empty s.t_globals) s.t_arrays
let need_bool s =
let f = List.fold_left (fun acc t ->
acc || Hstring.equal Smt.Type.type_bool (snd (Smt.Symbol.type_of t))
) in
f (f false s.t_globals) s.t_arrays
let need_real s =
let f = List.fold_left (fun acc t ->
acc || Hstring.equal Smt.Type.type_real (snd (Smt.Symbol.type_of t))
) in
f (f false s.t_globals) s.t_arrays
let cert_file_name () =
let bench = Filename.chop_extension (Filename.basename file) in
out_trace^"/"^bench^"_certif.why"
module AltErgo = struct
let rec print_constructors fmt = function
| [] -> assert false
| [c] -> Hstring.print fmt c
| c :: r -> fprintf fmt "%a | %a" Hstring.print c print_constructors r
let print_type_def fmt t =
match Smt.Type.constructors t with
| [] -> fprintf fmt "type %a" Hstring.print t
| cstrs ->
fprintf fmt "type %a = %a" Hstring.print t print_constructors cstrs
let add_type_defs fmt s =
HSet.iter (fun t ->
if not (Hstring.list_mem t [Smt.Type.type_proc;
Smt.Type.type_bool;
Smt.Type.type_int;
Smt.Type.type_bool]) then
fprintf fmt "%a@." print_type_def t) (collect_types s)
let print_type fmt t =
let t =
if Hstring.equal t Smt.Type.type_proc then Smt.Type.type_int else t in
Hstring.print fmt t
let rec print_type_args fmt = function
| [] -> assert false
| [t] -> print_type fmt t
| t :: r -> fprintf fmt "%a, %a" print_type t print_type_args r
let spr prime = if prime then "'" else ""
let print_decl ?(prime=false) fmt s =
let t_args, t_ret = Smt.Symbol.type_of s in
match t_args with
| [] -> fprintf fmt "logic %a%s : %a" Hstring.print s
(spr prime) print_type t_ret
| _ -> fprintf fmt "logic %a%s : %a -> %a" Hstring.print s
(spr prime) print_type_args t_args
print_type t_ret
let add_decls fmt s =
let d = List.iter (fprintf fmt "%a@." (print_decl ~prime:false)) in
let d_prime = List.iter (fprintf fmt "%a@." (print_decl ~prime:true)) in
d s.t_globals; d_prime s.t_globals;
d s.t_arrays; d_prime s.t_arrays
let op_comp = function Eq -> "=" | Lt -> "<" | Le -> "<=" | Neq -> "<>"
let print_const fmt c = assert false
let print_cs fmt cs = assert false
let print_proc fmt s =
try Scanf.sscanf (Hstring.view s) "#%d" (fun id -> fprintf fmt "z%d" id)
with Scanf.Scan_failure _ -> Hstring.print fmt s
let rec print_args fmt = function
| [] -> assert false
| [p] -> print_proc fmt p
| p :: r -> fprintf fmt "%a,%a" print_proc p print_args r
let rec print_term ~prime fmt = function
| Const cs -> print_cs fmt cs
| Elem (s, Var) -> print_proc fmt s
| Elem (s, Constr) when Hstring.equal s Term.hfalse -> fprintf fmt "false"
| Elem (s, Constr) when Hstring.equal s Term.htrue -> fprintf fmt "true"
| Elem (s, Constr) -> fprintf fmt "%a" Hstring.print s
| Elem (s, Glob) -> fprintf fmt "%a%s" Hstring.print s (spr prime)
| Access (a, li) ->
fprintf fmt "%a%s(%a)" Hstring.print a (spr prime) print_args li
| Arith (x, cs) ->
fprintf fmt "@[%a%a@]" (print_term ~prime) x print_cs cs
let rec print_atom ~prime fmt = function
| Atom.True -> fprintf fmt "true"
| Atom.False -> fprintf fmt "false"
| Atom.Comp (x, op, y) ->
fprintf fmt "%a %s %a"
(print_term ~prime) x (op_comp op) (print_term ~prime) y
| Atom.Ite (la, a1, a2) ->
fprintf fmt "@[(if (%a) then@ %a@ else@ %a)@]"
(print_atoms ~prime "and") (SAtom.elements la)
(print_atom ~prime) a1 (print_atom ~prime) a2
and print_atoms ~prime sep fmt = function
| [] -> ()
| [a] -> print_atom ~prime fmt a
| a::l -> fprintf fmt "%a %s@\n%a" (print_atom ~prime) a sep
(print_atoms ~prime sep) l
let print_satom ~prime fmt sa =
fprintf fmt "%a" (print_atoms ~prime "and") (SAtom.elements sa)
let print_array ~prime fmt a =
fprintf fmt "%a" (print_atoms ~prime "and") (Array.to_list a)
let prod vars =
let prod, _ = List.fold_left (fun (acc, vars) v ->
match vars with
| [] | [_] -> (acc, vars)
| _ ->
let vars = List.tl vars in
List.fold_left (fun acc v' -> (v, v') :: acc) acc vars,
vars
)
([], vars) vars in
prod
let print_distinct fmt vars = match vars with
| [] | [_] -> ()
| _ -> List.iter (fun (v1, v2) ->
fprintf fmt "%a <> %a and " print_proc v1 print_proc v2)
(prod vars)
let print_node ~prime fmt n =
begin match Node.variables n with
| [] -> ()
| args -> fprintf fmt "exists %a:int. %a"
print_args args print_distinct args
end;
fprintf fmt "%a" (print_satom ~prime) (Node.litterals n)
let print_neg_node ~prime fmt n =
begin match Node.variables n with
| [] -> fprintf fmt "not ("
| args -> fprintf fmt "forall %a:int. not (%a"
print_args args print_distinct args
end;
fprintf fmt "%a)" (print_satom ~prime) (Node.litterals n)
let rec print_invariant ~prime fmt visited = match visited with
| [] -> assert false
| [s] -> fprintf fmt "not (%a)" (print_node ~prime) s
| s ::r -> fprintf fmt "not (%a) and\n%a"
(print_node ~prime) s (print_invariant ~prime) r
let rec print_invariant_split ~prime fmt =
let cpt = ref 1 in
List.iter (fun s ->
fprintf fmt "goal invariant_preserved_%d:\nnot (%a)\n@."
!cpt (print_node ~prime) s;
incr cpt)
let rec print_disj ~prime fmt lsa = match lsa with
| [] -> assert false
| [sa] -> fprintf fmt "(%a)" (print_satom ~prime) sa
| sa :: l -> fprintf fmt "(%a) or\n%a" (print_satom ~prime) sa
(print_disj ~prime) l
let print_init fmt (args, lsa) =
begin match args with
| [] -> ()
| _ -> fprintf fmt "forall %a:int[%a]. "
print_args args print_args args
end;
print_disj ~prime:false fmt lsa
let distinct_from_params_imp fmt j args = match args with
| [] -> ()
| _ -> List.iter (fun v ->
fprintf fmt "%a = %a or " print_proc v print_proc j)
args
let split_swts_default swts =
let rec sd acc = function
| [] -> assert false
| [d] -> List.rev acc, d
| s::r -> sd (s::acc) r in
let swts, (_, default) = sd [] swts in
swts, default
let rec print_ite fmt (nt, swts, default) =
match swts with
| [] ->
fprintf fmt "%a = %a"
(print_term ~prime:true) nt
(print_term ~prime:false) default
| (cond, t) :: r ->
fprintf fmt "((%a) -> %a = %a) and\n"
(print_satom ~prime:false) cond
(print_term ~prime:true) nt
(print_term ~prime:false) t;
fprintf fmt "(not (%a) -> %a)"
(print_satom ~prime:false) cond
print_ite (nt, r, default)
let print_assign fmt (g, gu) =
match gu with
| UTerm t -> print_ite fmt (Elem(g, Glob), [], t)
| UCase swts ->
let swts, default = split_swts_default swts in
print_ite fmt (Elem(g, Glob), swts, default)
let rec add_assign_list globals fmt = function
| [] -> globals
| [g,t] -> fprintf fmt "%a" print_assign (g,t);
HSet.remove g globals
| (g,t) :: r ->
fprintf fmt "%a and\n" print_assign (g,t);
add_assign_list (HSet.remove g globals) fmt r
let rec print_assigns_unchanged fmt = function
| [] -> ()
| [g] -> fprintf fmt "%a' = %a" Hstring.print g Hstring.print g
| g::r -> fprintf fmt "%a' = %a and\n%a" Hstring.print g Hstring.print g
print_assigns_unchanged r
let print_assigns globals fmt ass =
let globals = List.fold_left (fun acc g -> HSet.add g acc)
HSet.empty globals in
let remaining = add_assign_list globals fmt ass in
let remaining = HSet.elements remaining in
if ass <> [] && remaining <> [] then fprintf fmt " and\n";
print_assigns_unchanged fmt remaining
let print_update fmt {up_arr=a; up_arg=args; up_swts=swts} =
let swts, default = split_swts_default swts in
fprintf fmt "forall %a:int.\n" print_args args;
print_ite fmt (Access (a, args), swts, default)
let rec add_updates_list arrays fmt = function
| [] -> arrays
| [{up_arr=a} as u] ->
fprintf fmt "(%a)" print_update u;
HSet.remove a arrays
| ({up_arr=a} as u) :: r ->
fprintf fmt "(%a) and\n" print_update u;
add_updates_list (HSet.remove a arrays) fmt r
let print_unchanged fmt a =
let targs, _ = Smt.Symbol.type_of a in
let args, _ =
List.fold_left (fun (acc, n) _ ->
Hstring.make ("z"^(string_of_int n)) :: acc, n + 1)
([], 1) targs in
let args = List.rev args in
fprintf fmt "forall %a:int. " print_args args;
fprintf fmt "%a'(%a) = %a(%a)"
Hstring.print a print_args args
Hstring.print a print_args args
let rec print_all_unchanged fmt = function
| [] -> ()
| [a] -> fprintf fmt "(%a) " print_unchanged a
| a::r -> fprintf fmt "(%a) and\n%a"
print_unchanged a
print_all_unchanged r
let print_updates arrays fmt upds =
let arrays = List.fold_left (fun acc a -> Hstring.HSet.add a acc)
Hstring.HSet.empty arrays in
let remaining = add_updates_list arrays fmt upds in
HSet.iter (fprintf fmt "and (%a)\n" print_unchanged) remaining
let print_updates arrays fmt upds =
let arrays = List.fold_left (fun acc a -> HSet.add a acc)
HSet.empty arrays in
let remaining = add_updates_list arrays fmt upds in
let remaining = HSet.elements remaining in
if upds <> [] && remaining <> [] then fprintf fmt " and\n";
print_all_unchanged fmt remaining
let rec make_norm_subst acc = function
| [], _ | _, [] -> List.rev acc
| a::ar, v::vr -> make_norm_subst ((a, v) :: acc) (ar, vr)
let max_quant arrays =
let nb =
List.fold_left (fun acc a ->
max (List.length (fst (Smt.Symbol.type_of a))) acc) 0 arrays in
let rec zify acc = function
| 0 -> acc
| n ->
let z = Hstring.make ("z"^(string_of_int n)) in
zify (z :: acc) (n - 1) in
zify [] nb
let print_norm_update vars fmt {up_arr=a; up_arg=args; up_swts=swts} =
let sigma = make_norm_subst [] (args, vars) in
let args = List.map snd sigma in
let swts = List.map (fun (cond, t) ->
SAtom.subst sigma cond, Term.subst sigma t) swts in
let swts, default = split_swts_default swts in
print_ite fmt (Access (a, args), swts, default)
let rec add_norm_updates vars arrays fmt = function
| [] -> arrays
| [{up_arr=a} as u] ->
fprintf fmt "(%a)" (print_norm_update vars) u;
HSet.remove a arrays
| ({up_arr=a} as u) :: r ->
fprintf fmt "(%a) and\n" (print_norm_update vars) u;
add_norm_updates vars (HSet.remove a arrays) fmt r
let print_norm_unchanged vars fmt a =
let targs, _ = Smt.Symbol.type_of a in
let rec select_vars acc = function
| [], _ | _, [] -> List.rev acc
| t::tr, v::vr -> select_vars (v::acc) (tr, vr) in
let args = select_vars [] (targs, vars) in
fprintf fmt "%a'(%a) = %a(%a)"
Hstring.print a print_args args
Hstring.print a print_args args
let rec print_norm_all_unchanged vars fmt = function
| [] -> ()
| [a] -> fprintf fmt "(%a) " (print_norm_unchanged vars) a
| a::r -> fprintf fmt "(%a) and\n%a"
(print_norm_unchanged vars) a
(print_norm_all_unchanged vars) r
let print_norm_updates arrays fmt upds =
let vars = max_quant arrays in
let arrays = List.fold_left (fun acc a -> HSet.add a acc)
HSet.empty arrays in
fprintf fmt "forall %a:int.\n" print_args vars;
let remaining = add_norm_updates vars arrays fmt upds in
let remaining = HSet.elements remaining in
if upds <> [] && remaining <> [] then fprintf fmt " and\n";
print_norm_all_unchanged vars fmt remaining
let print_transtion s fmt {tr_info = t} =
fprintf fmt "(* transition %a *)\n" Hstring.print t.tr_name;
fprintf fmt "(";
let args = t.tr_args in
begin match args with
| [] -> ()
| _ -> fprintf fmt "exists %a:int. %a\n"
print_args args print_distinct args
end;
fprintf fmt "( (* requires *)\n";
print_satom ~prime:false fmt t.tr_reqs;
List.iter (fun (j, disj) ->
fprintf fmt "\nand (forall %a:int." print_proc j;
distinct_from_params_imp fmt j args;
fprintf fmt "\n%a" (print_disj ~prime:false) disj;
fprintf fmt ")\n";
) t.tr_ureq;
fprintf fmt ")";
if s.t_globals <> [] || s.t_arrays <> [] then
begin
fprintf fmt " and\n";
fprintf fmt "( (* actions *)\n";
print_assigns s.t_globals fmt t.tr_assigns;
if s.t_globals <> [] && s.t_arrays <> [] then fprintf fmt " and\n";
(* print_norm_updates s.t_arrays fmt t.tr_upds; *)
print_updates s.t_arrays fmt t.tr_upds;
fprintf fmt ")";
end;
fprintf fmt ")@."
let rec print_transitions_disj s fmt = function
| [] -> ()
| [t] -> print_transtion s fmt t
| t :: r -> fprintf fmt "%a\n@.or\n\n%a"
(print_transtion s) t
(print_transitions_disj s) r
let transition_relation fmt s =
fprintf fmt "( (* Transition Relation *)@.";
print_transitions_disj s fmt s.t_trans;
fprintf fmt ")@."
let goal_init fmt s visited =
fprintf fmt "goal initialisation:@.";
fprintf fmt "(* init *)\n(%a)\n\n->\n\n" print_init s.t_init;
fprintf fmt "(* invariant *)\n(%a)@." (print_invariant ~prime:false) visited
let goal_inductive fmt s visited =
fprintf fmt "goal inductive:@.";
fprintf fmt "((* invariant before *)\n(%a)@."
(print_invariant ~prime:false) visited;
fprintf fmt "\nand\n%a)@." transition_relation s;
fprintf fmt "\n->\n\n(* invariant after *)\n(%a)@."
(print_invariant ~prime:true) visited
let goal_inductive_split fmt s visited =
fprintf fmt "axiom induction_hypothesis:@.";
fprintf fmt "(* invariant before *)\n(%a)@."
(print_invariant ~prime:false) visited;
fprintf fmt "\n\naxiom transition_relation:@.";
fprintf fmt "%a@." transition_relation s;
fprintf fmt "\n(* invariant after *)\n%a@."
(print_invariant_split ~prime:true) visited
let goal_property fmt uns visited =
fprintf fmt "goal property:@.";
fprintf fmt "(* invariant *)\n(%a)@."
(print_invariant ~prime:false) visited;
fprintf fmt "\n->\n\n(* property *)\n(%a)@."
(print_invariant ~prime:false) uns
let out_dir = ref ""
let base file = Filename.chop_extension (Filename.basename file)
let create_dir () =
let bench = base file in
let dir = out_trace^"/"^bench^"_certif_altergo" in
begin
try if not (Sys.is_directory dir) then failwith (dir^" is not a directory")
with Sys_error _ -> Unix.mkdir dir 0o755
end;
out_dir := dir
let add_definitions fmt s =
add_type_defs fmt s;
fprintf fmt "@.";
add_decls fmt s;
fprintf fmt "@."
let assume_invariant ~prime fmt visited =
let cpt = ref 0 in
List.iter (fun s ->
incr cpt;
fprintf fmt "axiom induction_hypothesis_%d:\n" !cpt;
fprintf fmt " @[not (%a)@]\n@." (print_node ~prime) s;
(* fprintf fmt " @[%a@]\n@." (print_neg_system ~prime) s; *)
) visited
let goal_invariant ~prime fmt visited =
let cpt = ref 0 in
List.iter (fun s ->
incr cpt;
fprintf fmt "goal invariant_%d:\n" !cpt;
fprintf fmt " @[not (%a)@]\n@." (print_node ~prime) s;
(* fprintf fmt " @[%a@]\n@." (print_neg_system ~prime) s; *)
) visited
let create_init s visited =
let bench = base file in
let init_file = !out_dir ^"/"^bench^"_init.why" in
let cout = open_out init_file in
let fmt = formatter_of_out_channel cout in
add_definitions fmt s;
fprintf fmt "axiom initial:\n%a\n@." print_init s.t_init;
goal_invariant ~prime:false fmt visited;
(* goal_init fmt s visited; *)
flush cout; close_out cout
let create_property s visited =
let bench = base file in
let init_file = !out_dir ^"/"^bench^"_property.why" in
let cout = open_out init_file in
let fmt = formatter_of_out_channel cout in
add_definitions fmt s;
assume_invariant ~prime:false fmt visited;
goal_invariant ~prime:false fmt s.t_unsafe;
flush cout; close_out cout
let create_inductive s visited =
let bench = base file in
let init_file = !out_dir ^"/"^bench^"_inductive.why" in
let cout = open_out init_file in
let fmt = formatter_of_out_channel cout in
add_definitions fmt s;
assume_invariant ~prime:false fmt visited;
fprintf fmt "\naxiom transition_relation:@.";
fprintf fmt "%a\n@." transition_relation s;
goal_invariant ~prime:true fmt visited;
flush cout; close_out cout
let certificate s visited =
create_dir ();
create_init s visited;
create_property s visited;
create_inductive s visited;
printf "Alt-Ergo certificates created in %s@." !out_dir
end
module Why3 = struct
module CompInt = struct type t = int let compare = Stdlib.compare end
module NodeH = struct
type t = Node.t
let compare n1 n2 = Stdlib.compare n1.tag n2.tag
let equal n1 n2 = n1.tag == n2.tag
let hash n = n.tag
end
module SI = Set.Make(CompInt)
module MI = Map.Make(CompInt)
module NodeMap = Map.Make(NodeH)
module NH = Hashtbl.Make(NodeH)
module Fixpoint = Fixpoint.FixpointList
let sanitize_string_for_why3 s =
String.map (function
| '-' | '.' -> '_'
| c -> c
) s
let print_name fmt s =
fprintf fmt "%s"
(String.uncapitalize_ascii
(sanitize_string_for_why3 (Hstring.view s)))
let rec print_constructors fmt = function
| [] -> assert false
| [c] -> Hstring.print fmt c
| c :: r -> fprintf fmt "%a | %a" Hstring.print c print_constructors r
let print_type_def fmt t =
match Smt.Type.constructors t with
| [] -> fprintf fmt "type %a" Hstring.print t
| cstrs ->
fprintf fmt "type %a = %a" Hstring.print t print_constructors cstrs
let add_type_defs fmt s =
HSet.iter (fun t ->
if not (Hstring.list_mem t [Smt.Type.type_proc;
Smt.Type.type_bool;
Smt.Type.type_int;
Smt.Type.type_real]) then
fprintf fmt "%a@ " print_type_def t) (collect_types s)
let print_type fmt t =
let t =
if Hstring.equal t Smt.Type.type_proc then Smt.Type.type_int else t in
Hstring.print fmt t
let rec print_type_args fmt = function
| [] -> assert false
| [t] -> print_type fmt t
| t :: r -> fprintf fmt "%a, %a" print_type t print_type_args r
let spr prime = if prime then "'" else ""
let print_decl ?(prime=false) ?(const=false) fmt s =
let t_args, t_ret = Smt.Symbol.type_of s in
fprintf fmt "%s %a%s "
(if const then "constant" else "function")
print_name s (spr prime);
List.iter (fprintf fmt "%a " print_type) t_args;
fprintf fmt ": %a" print_type t_ret
let add_decls fmt s =
let d = List.iter
(fprintf fmt "%a@ " (print_decl ~prime:false ~const:false)) in
let c = List.iter
(fprintf fmt "%a@ " (print_decl ~prime:false ~const:true)) in
let d_prime = List.iter
(fprintf fmt "%a@ " (print_decl ~prime:true ~const:false)) in
d s.t_globals; d_prime s.t_globals;
fprintf fmt "@\n";
d s.t_arrays; d_prime s.t_arrays;
fprintf fmt "@\n";
c s.t_consts
let op_comp = function Eq -> "=" | Lt -> "<" | Le -> "<=" | Neq -> "<>"
let print_const fmt = function
| ConstInt n -> fprintf fmt "%s" (Num.string_of_num n)
| ConstReal n -> fprintf fmt "%F" (Num.float_of_num n)
| ConstName n -> fprintf fmt "%a" print_name n
let print_cs ?(arith=false) fmt cs =
let ls = MConst.fold (fun c i acc -> (c,i) :: acc) cs [] in
let rec prpr arith first ls =
let put_sign = arith || not first in
match ls, put_sign with
| (c, 1) :: rs, false ->
print_const fmt c;
prpr arith false rs
| (c, -1) :: rs, _ ->
fprintf fmt " - %a" print_const c;
prpr arith false rs
| (c, i) :: rs, false ->
fprintf fmt "%d * %a" i print_const c;
prpr arith false rs
| (c, 1) :: rs, true ->
fprintf fmt " + %a" print_const c;
prpr arith false rs
| (c, i) :: rs, true ->
fprintf fmt "%+d * %a" i print_const c;
prpr arith false rs
| [], _ -> ()
in
prpr arith true ls
let print_proc fmt s =
try Scanf.sscanf (Hstring.view s) "#%d" (fun id -> fprintf fmt "z%d" id)
with Scanf.Scan_failure _ -> print_name fmt s
let rec print_args fmt = function
| [] -> assert false
| [p] -> print_proc fmt p
| p :: r -> fprintf fmt "%a %a" print_proc p print_args r
let rec print_term ~prime fmt = function
| Const cs -> print_cs fmt cs
| Elem (s, Var) -> print_proc fmt s
| Elem (s, Constr) -> fprintf fmt "%a" Hstring.print s
| Elem (s, Glob) -> fprintf fmt "%a%s" print_name s (spr prime)
| Access (a, li) ->
fprintf fmt "(%a%s %a)" print_name a (spr prime) print_args li
| Arith (x, cs) ->
fprintf fmt "%a%a" (print_term ~prime) x (print_cs ~arith:true) cs
let rec print_atom ~prime fmt = function
| Atom.True -> fprintf fmt "true"
| Atom.False -> fprintf fmt "false"
| Atom.Comp (x, op, y) ->
fprintf fmt "%a %s %a"
(print_term ~prime) x (op_comp op) (print_term ~prime) y
| Atom.Ite (la, a1, a2) ->
fprintf fmt "if %a then@ %a@ else@ %a"
(print_atoms ~prime "/\\") (SAtom.elements la)
(print_atom ~prime) a1 (print_atom ~prime) a2
and print_atoms ~prime sep fmt = function
| [] -> ()
| [a] -> print_atom ~prime fmt a
| a::l -> fprintf fmt "%a %s@ %a" (print_atom ~prime) a sep
(print_atoms ~prime sep) l
let print_satom ~prime fmt sa =
fprintf fmt "%a" (print_atoms ~prime "/\\") (SAtom.elements sa)
let print_array ~prime fmt a =
fprintf fmt "%a" (print_atoms ~prime "/\\") (Array.to_list a)
let prod vars =
let prod, _ = List.fold_left (fun (acc, vars) v ->
match vars with
| [] | [_] -> (acc, vars)
| _ ->
let vars = List.tl vars in
List.fold_left (fun acc v' -> (v, v') :: acc) acc vars,
vars
)
([], vars) vars in
prod
let print_distinct fmt vars = match vars with
| [] | [_] -> ()
| _ -> List.iter (fun (v1, v2) ->
fprintf fmt "%a <> %a /\\ " print_proc v1 print_proc v2)
(prod vars)
let print_node ~prime fmt n =
begin match Node.variables n with
| [] -> ()
| args -> fprintf fmt "exists %a:int. %a"
print_args args print_distinct args
end;
fprintf fmt "%a" (print_satom ~prime) (Node.litterals n)
let rec print_invariant ~prime fmt visited = match visited with
| [] -> assert false
| [s] -> fprintf fmt "not (%a)" (print_node ~prime) s
| s ::r -> fprintf fmt "not (%a) /\\@ %a"
(print_node ~prime) s (print_invariant ~prime) r
let rec print_invariant_split ~prime fmt =
let cpt = ref 1 in
List.iter (fun s ->
fprintf fmt "goal invariant_preserved_%d:\nnot (%a)\n@."
!cpt (print_node ~prime) s;
incr cpt)
let rec print_disj ~prime fmt lsa = match lsa with
| [] -> assert false
| [sa] -> fprintf fmt "(%a)" (print_satom ~prime) sa
| sa :: l -> fprintf fmt "(%a) \\/\n%a" (print_satom ~prime) sa
(print_disj ~prime) l
let print_init fmt (args, lsa) =
begin match args with
| [] -> ()
| _ -> fprintf fmt "forall %a:int. " print_args args
end;
print_disj ~prime:false fmt lsa
let distinct_from_params_imp fmt j args = match args with
| [] -> ()
| _ -> List.iter (fun v ->
fprintf fmt "%a = %a \\/ " print_proc v print_proc j)
args
let split_swts_default swts =
let rec sd acc = function
| [] -> assert false
| [d] -> List.rev acc, d
| s::r -> sd (s::acc) r in
let swts, (_, default) = sd [] swts in
swts, default
let rec print_ite fmt (nt, swts, default) =
match swts with
| [] ->
fprintf fmt "%a = %a"
(print_term ~prime:true) nt
(print_term ~prime:false) default
| (cond, t) :: r ->
fprintf fmt "@[<hov 0>@[<hov 2>if %a then@ %a = %a@]@ \
@[<hov 2>else %a@]@]"
(print_satom ~prime:false) cond
(print_term ~prime:true) nt
(print_term ~prime:false) t
print_ite (nt, r, default)
let print_assign fmt (g, gu) =
match gu with
| UTerm t -> print_ite fmt (Elem(g, Glob), [], t)
| UCase swts ->
let swts, default = split_swts_default swts in
print_ite fmt (Elem(g, Glob), swts, default)
let rec add_assign_list globals fmt = function
| [] -> globals
| [g,t] -> fprintf fmt "%a" print_assign (g,t);
HSet.remove g globals
| (g,t) :: r ->
fprintf fmt "%a /\\@ " print_assign (g,t);
add_assign_list (HSet.remove g globals) fmt r
let rec print_assigns_unchanged fmt = function
| [] -> ()
| [g] -> fprintf fmt "%a' = %a" print_name g print_name g
| g::r -> fprintf fmt "%a' = %a /\\@ %a" print_name g print_name g
print_assigns_unchanged r
let print_assigns globals fmt ass =
let globals = List.fold_left (fun acc g -> HSet.add g acc)
HSet.empty globals in
let remaining = add_assign_list globals fmt ass in
let remaining = HSet.elements remaining in
if ass <> [] && remaining <> [] then fprintf fmt " /\\@ ";
print_assigns_unchanged fmt remaining
let print_update fmt {up_arr=a; up_arg=args; up_swts=swts} =
let swts, default = split_swts_default swts in
fprintf fmt "@[<hov 2>forall %a:int.@ " print_args args;
print_ite fmt (Access (a, args), swts, default);
fprintf fmt "@]"
let rec add_updates_list arrays fmt = function
| [] -> arrays
| [{up_arr=a} as u] ->
fprintf fmt "(%a)" print_update u;
HSet.remove a arrays
| ({up_arr=a} as u) :: r ->
fprintf fmt "(%a) /\\@ " print_update u;
add_updates_list (HSet.remove a arrays) fmt r
let print_unchanged fmt a =
let targs, _ = Smt.Symbol.type_of a in
let args, _ =
List.fold_left (fun (acc, n) _ ->
Hstring.make ("z"^(string_of_int n)) :: acc, n + 1)
([], 1) targs in
let args = List.rev args in
fprintf fmt "@[<hov 2>forall %a:int.@ " print_args args;
fprintf fmt "%a' %a = %a %a"
print_name a print_args args
print_name a print_args args;
fprintf fmt "@]"
let rec print_all_unchanged fmt = function
| [] -> ()
| [a] -> fprintf fmt "(%a) " print_unchanged a
| a::r -> fprintf fmt "(%a) /\\@ %a"
print_unchanged a
print_all_unchanged r
let print_updates arrays fmt upds =
let arrays = List.fold_left (fun acc a -> Hstring.HSet.add a acc)
Hstring.HSet.empty arrays in
let remaining = add_updates_list arrays fmt upds in
HSet.iter (fprintf fmt "/\\ (%a)@ " print_unchanged) remaining
let print_updates arrays fmt upds =
let arrays = List.fold_left (fun acc a -> HSet.add a acc)
HSet.empty arrays in
let remaining = add_updates_list arrays fmt upds in
let remaining = HSet.elements remaining in
if upds <> [] && remaining <> [] then fprintf fmt " /\\@ ";
print_all_unchanged fmt remaining
let rec make_norm_subst acc = function
| [], _ | _, [] -> List.rev acc
| a::ar, v::vr -> make_norm_subst ((a, v) :: acc) (ar, vr)
let max_quant arrays =
let nb =
List.fold_left (fun acc a ->
max (List.length (fst (Smt.Symbol.type_of a))) acc) 0 arrays in
let rec zify acc = function
| 0 -> acc
| n ->
let z = Hstring.make ("z"^(string_of_int n)) in
zify (z :: acc) (n - 1) in
zify [] nb
let print_norm_update vars fmt {up_arr=a; up_arg=args; up_swts=swts} =
let sigma = make_norm_subst [] (args, vars) in
let args = List.map snd sigma in
let swts = List.map (fun (cond, t) ->
SAtom.subst sigma cond, Term.subst sigma t) swts in
let swts, default = split_swts_default swts in
print_ite fmt (Access (a, args), swts, default)
let rec add_norm_updates vars arrays fmt = function
| [] -> arrays
| [{up_arr=a} as u] ->
fprintf fmt "(%a)" (print_norm_update vars) u;
HSet.remove a arrays
| ({up_arr=a} as u) :: r ->
fprintf fmt "(%a) /\\@ " (print_norm_update vars) u;
add_norm_updates vars (HSet.remove a arrays) fmt r
let print_norm_unchanged vars fmt a =
let targs, _ = Smt.Symbol.type_of a in
let rec select_vars acc = function
| [], _ | _, [] -> List.rev acc
| t::tr, v::vr -> select_vars (v::acc) (tr, vr) in
let args = select_vars [] (targs, vars) in
fprintf fmt "%a' %a = %a %a"
print_name a print_args args
print_name a print_args args
let rec print_norm_all_unchanged vars fmt = function
| [] -> ()
| [a] -> fprintf fmt "(%a) " (print_norm_unchanged vars) a
| a::r -> fprintf fmt "(%a) /\\@ %a"
(print_norm_unchanged vars) a
(print_norm_all_unchanged vars) r
let print_norm_updates arrays fmt upds =
let vars = max_quant arrays in
let arrays = List.fold_left (fun acc a -> HSet.add a acc)
HSet.empty arrays in
fprintf fmt "forall %a:int.@ " print_args vars;
let remaining = add_norm_updates vars arrays fmt upds in
let remaining = HSet.elements remaining in
if upds <> [] && remaining <> [] then fprintf fmt " /\\@ ";
print_norm_all_unchanged vars fmt remaining
let print_transition s fmt {tr_info = t} =
fprintf fmt "(* transition %a *)@\n" Hstring.print t.tr_name;
fprintf fmt "(";
let args = t.tr_args in
begin match args with
| [] -> fprintf fmt "@,"
| _ -> fprintf fmt "exists %a:int. %a@\n"
print_args args print_distinct args
end;
fprintf fmt "@[<hov 2>( (* requires *)@\n";
print_satom ~prime:false fmt t.tr_reqs;
List.iter (fun (j, disj) ->
fprintf fmt "\n/\\ (forall %a:int." print_proc j;
distinct_from_params_imp fmt j args;
fprintf fmt "\n%a" (print_disj ~prime:false) disj;
fprintf fmt ")\n";
) t.tr_ureq;
fprintf fmt " )@]";
if s.t_globals <> [] || s.t_arrays <> [] then
begin
fprintf fmt " /\\@ ";
fprintf fmt "@[<v 2>( (* actions *)@\n";
print_assigns s.t_globals fmt t.tr_assigns;
if s.t_globals <> [] && s.t_arrays <> [] then fprintf fmt " /\\@ ";
(* print_norm_updates s.t_arrays fmt t.tr_upds; *)
print_updates s.t_arrays fmt t.tr_upds;
fprintf fmt ")@]";
end;
fprintf fmt ")@\n"
let rec print_transitions_disj s fmt = function
| [] -> ()
| [t] -> print_transition s fmt t
| t :: r -> fprintf fmt "%a\n@.\\/\n\n%a"
(print_transition s) t
(print_transitions_disj s) r
let transition_relation fmt s =
fprintf fmt "( (* Transition Relation *)@.";
print_transitions_disj s fmt s.t_trans;
fprintf fmt ")@."
let goal_init fmt s visited =
fprintf fmt "goal initialisation:@.";
fprintf fmt "(* init *)\n(%a)\n\n->\n\n" print_init s.t_init;
fprintf fmt "(* invariant *)\n(%a)@." (print_invariant ~prime:false) visited
let goal_inductive fmt s visited =
fprintf fmt "goal inductive:@.";
fprintf fmt "((* invariant before *)\n(%a)@."
(print_invariant ~prime:false) visited;
fprintf fmt "\n/\\\n%a)@." transition_relation s;
fprintf fmt "\n->\n\n(* invariant after *)\n(%a)@."
(print_invariant ~prime:true) visited
let goal_inductive_split fmt s visited =
fprintf fmt "axiom induction_hypothesis:@.";
fprintf fmt "(* invariant before *)\n(%a)@."
(print_invariant ~prime:false) visited;
fprintf fmt "\n\naxiom transition_relation:@.";
fprintf fmt "%a@." transition_relation s;
fprintf fmt "\n(* invariant after *)\n%a@."
(print_invariant_split ~prime:true) visited
let goal_property fmt uns visited =
fprintf fmt "goal property:@.";
fprintf fmt "(* invariant *)\n(%a)@."
(print_invariant ~prime:false) visited;
fprintf fmt "\n->\n\n(* property *)\n(%a)@."
(print_invariant ~prime:false) uns
let print_invnode ~prime fmt s =
fprintf fmt "not (%a)" (print_node ~prime) s
let assume_invariant ~prime fmt visited =