-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathosediff.py
529 lines (434 loc) · 25.3 KB
/
osediff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import os
import sys
sys.path.append(os.getcwd())
import yaml
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, CLIPTextModel
from diffusers import DDPMScheduler
from models.autoencoder_kl import AutoencoderKL
from models.unet_2d_condition import UNet2DConditionModel
from peft import LoraConfig
from my_utils.vaehook import VAEHook, perfcount
def initialize_vae(args):
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
vae.requires_grad_(False)
vae.train()
l_target_modules_encoder = []
l_grep = ["conv1","conv2","conv_in", "conv_shortcut", "conv", "conv_out", "to_k", "to_q", "to_v", "to_out.0"]
for n, p in vae.named_parameters():
if "bias" in n or "norm" in n:
continue
for pattern in l_grep:
if pattern in n and ("encoder" in n):
l_target_modules_encoder.append(n.replace(".weight",""))
elif ('quant_conv' in n) and ('post_quant_conv' not in n):
l_target_modules_encoder.append(n.replace(".weight",""))
lora_conf_encoder = LoraConfig(r=args.lora_rank, init_lora_weights="gaussian",target_modules=l_target_modules_encoder)
vae.add_adapter(lora_conf_encoder, adapter_name="default_encoder")
return vae, l_target_modules_encoder
def initialize_unet(args, return_lora_module_names=False, pretrained_model_name_or_path=None):
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
unet.requires_grad_(False)
unet.train()
l_target_modules_encoder, l_target_modules_decoder, l_modules_others = [], [], []
l_grep = ["to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_in", "conv_shortcut", "conv_out", "proj_out", "proj_in", "ff.net.2", "ff.net.0.proj"]
for n, p in unet.named_parameters():
if "bias" in n or "norm" in n:
continue
for pattern in l_grep:
if pattern in n and ("down_blocks" in n or "conv_in" in n):
l_target_modules_encoder.append(n.replace(".weight",""))
break
elif pattern in n and ("up_blocks" in n or "conv_out" in n):
l_target_modules_decoder.append(n.replace(".weight",""))
break
elif pattern in n:
l_modules_others.append(n.replace(".weight",""))
break
lora_conf_encoder = LoraConfig(r=args.lora_rank, init_lora_weights="gaussian",target_modules=l_target_modules_encoder)
lora_conf_decoder = LoraConfig(r=args.lora_rank, init_lora_weights="gaussian",target_modules=l_target_modules_decoder)
lora_conf_others = LoraConfig(r=args.lora_rank, init_lora_weights="gaussian",target_modules=l_modules_others)
unet.add_adapter(lora_conf_encoder, adapter_name="default_encoder")
unet.add_adapter(lora_conf_decoder, adapter_name="default_decoder")
unet.add_adapter(lora_conf_others, adapter_name="default_others")
return unet, l_target_modules_encoder, l_target_modules_decoder, l_modules_others
class OSEDiff_gen(torch.nn.Module):
def __init__(self, args):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder").cuda()
self.noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
self.noise_scheduler.set_timesteps(1, device="cuda")
self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.cuda()
self.args = args
self.vae, self.lora_vae_modules_encoder = initialize_vae(self.args)
self.unet, self.lora_unet_modules_encoder, self.lora_unet_modules_decoder, self.lora_unet_others = initialize_unet(self.args)
self.lora_rank_unet = self.args.lora_rank
self.lora_rank_vae = self.args.lora_rank
self.unet.to("cuda")
self.vae.to("cuda")
self.timesteps = torch.tensor([999], device="cuda").long()
self.text_encoder.requires_grad_(False)
def set_train(self):
self.unet.train()
self.vae.train()
for n, _p in self.unet.named_parameters():
if "lora" in n:
_p.requires_grad = True
self.unet.conv_in.requires_grad_(True)
for n, _p in self.vae.named_parameters():
if "lora" in n:
_p.requires_grad = True
def encode_prompt(self, prompt_batch):
prompt_embeds_list = []
with torch.no_grad():
for caption in prompt_batch:
text_input_ids = self.tokenizer(
caption, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt"
).input_ids
prompt_embeds = self.text_encoder(
text_input_ids.to(self.text_encoder.device),
)[0]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=0)
return prompt_embeds
def forward(self, c_t, batch=None, args=None):
encoded_control = self.vae.encode(c_t).latent_dist.sample() * self.vae.config.scaling_factor
# calculate prompt_embeddings and neg_prompt_embeddings
prompt_embeds = self.encode_prompt(batch["prompt"])
neg_prompt_embeds = self.encode_prompt(batch["neg_prompt"])
model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=prompt_embeds.to(torch.float32),).sample
x_denoised = self.noise_scheduler.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor).sample).clamp(-1, 1)
return output_image, x_denoised, prompt_embeds, neg_prompt_embeds
def save_model(self, outf):
sd = {}
sd["vae_lora_encoder_modules"] = self.lora_vae_modules_encoder
sd["unet_lora_encoder_modules"], sd["unet_lora_decoder_modules"], sd["unet_lora_others_modules"] =\
self.lora_unet_modules_encoder, self.lora_unet_modules_decoder, self.lora_unet_others
sd["rank_unet"] = self.lora_rank_unet
sd["rank_vae"] = self.lora_rank_vae
sd["state_dict_unet"] = {k: v for k, v in self.unet.state_dict().items() if "lora" in k or "conv_in" in k}
sd["state_dict_vae"] = {k: v for k, v in self.vae.state_dict().items() if "lora" in k}
torch.save(sd, outf)
class OSEDiff_reg(torch.nn.Module):
def __init__(self, args, accelerator):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
self.noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
self.args = args
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
self.weight_dtype = weight_dtype
self.vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
self.unet_fix = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
self.unet_update, self.lora_unet_modules_encoder, self.lora_unet_modules_decoder, self.lora_unet_others =\
initialize_unet(args)
self.text_encoder.to(accelerator.device, dtype=weight_dtype)
self.unet_fix.to(accelerator.device, dtype=weight_dtype)
self.unet_update.to(accelerator.device)
self.vae.to(accelerator.device)
self.text_encoder.requires_grad_(False)
self.vae.requires_grad_(False)
self.unet_fix.requires_grad_(False)
def set_train(self):
self.unet_update.train()
for n, _p in self.unet_update.named_parameters():
if "lora" in n:
_p.requires_grad = True
def diff_loss(self, latents, prompt_embeds, args):
latents, prompt_embeds = latents.detach(), prompt_embeds.detach()
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device).long()
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
noise_pred = self.unet_update(
noisy_latents,
timestep=timesteps,
encoder_hidden_states=prompt_embeds,
).sample
loss_d = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
return loss_d
def eps_to_mu(self, scheduler, model_output, sample, timesteps):
alphas_cumprod = scheduler.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
alpha_prod_t = alphas_cumprod[timesteps]
while len(alpha_prod_t.shape) < len(sample.shape):
alpha_prod_t = alpha_prod_t.unsqueeze(-1)
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
return pred_original_sample
def distribution_matching_loss(self, latents, prompt_embeds, neg_prompt_embeds, args):
bsz = latents.shape[0]
timesteps = torch.randint(20, 980, (bsz,), device=latents.device).long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
with torch.no_grad():
noise_pred_update = self.unet_update(
noisy_latents,
timestep=timesteps,
encoder_hidden_states=prompt_embeds.float(),
).sample
x0_pred_update = self.eps_to_mu(self.noise_scheduler, noise_pred_update, noisy_latents, timesteps)
noisy_latents_input = torch.cat([noisy_latents] * 2)
timesteps_input = torch.cat([timesteps] * 2)
prompt_embeds = torch.cat([neg_prompt_embeds, prompt_embeds], dim=0)
noise_pred_fix = self.unet_fix(
noisy_latents_input.to(dtype=self.weight_dtype),
timestep=timesteps_input,
encoder_hidden_states=prompt_embeds.to(dtype=self.weight_dtype),
).sample
noise_pred_uncond, noise_pred_text = noise_pred_fix.chunk(2)
noise_pred_fix = noise_pred_uncond + args.cfg_vsd * (noise_pred_text - noise_pred_uncond)
noise_pred_fix.to(dtype=torch.float32)
x0_pred_fix = self.eps_to_mu(self.noise_scheduler, noise_pred_fix, noisy_latents, timesteps)
weighting_factor = torch.abs(latents - x0_pred_fix).mean(dim=[1, 2, 3], keepdim=True)
grad = (x0_pred_update - x0_pred_fix) / weighting_factor
loss = F.mse_loss(latents, (latents - grad).detach())
return loss
class OSEDiff_test(torch.nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.tokenizer = AutoTokenizer.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="text_encoder")
self.noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
self.noise_scheduler.set_timesteps(1, device="cuda")
self.vae = AutoencoderKL.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="vae")
self.unet = UNet2DConditionModel.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="unet")
# vae tile
self._init_tiled_vae(encoder_tile_size=args.vae_encoder_tiled_size, decoder_tile_size=args.vae_decoder_tiled_size)
self.weight_dtype = torch.float32
if args.mixed_precision == "fp16":
self.weight_dtype = torch.float16
osediff = torch.load(args.osediff_path)
self.load_ckpt(osediff)
# merge lora
if self.args.merge_and_unload_lora:
print(f'===> MERGE LORA <===')
self.vae = self.vae.merge_and_unload()
self.unet = self.unet.merge_and_unload()
self.unet.to("cuda", dtype=self.weight_dtype)
self.vae.to("cuda", dtype=self.weight_dtype)
self.text_encoder.to("cuda", dtype=self.weight_dtype)
self.timesteps = torch.tensor([999], device="cuda").long()
self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.cuda()
def load_ckpt(self, model):
# load unet lora
lora_conf_encoder = LoraConfig(r=model["rank_unet"], init_lora_weights="gaussian", target_modules=model["unet_lora_encoder_modules"])
lora_conf_decoder = LoraConfig(r=model["rank_unet"], init_lora_weights="gaussian", target_modules=model["unet_lora_decoder_modules"])
lora_conf_others = LoraConfig(r=model["rank_unet"], init_lora_weights="gaussian", target_modules=model["unet_lora_others_modules"])
self.unet.add_adapter(lora_conf_encoder, adapter_name="default_encoder")
self.unet.add_adapter(lora_conf_decoder, adapter_name="default_decoder")
self.unet.add_adapter(lora_conf_others, adapter_name="default_others")
for n, p in self.unet.named_parameters():
if "lora" in n or "conv_in" in n:
p.data.copy_(model["state_dict_unet"][n])
self.unet.set_adapter(["default_encoder", "default_decoder", "default_others"])
# load vae lora
vae_lora_conf_encoder = LoraConfig(r=model["rank_vae"], init_lora_weights="gaussian", target_modules=model["vae_lora_encoder_modules"])
self.vae.add_adapter(vae_lora_conf_encoder, adapter_name="default_encoder")
for n, p in self.vae.named_parameters():
if "lora" in n:
p.data.copy_(model["state_dict_vae"][n])
self.vae.set_adapter(['default_encoder'])
def encode_prompt(self, prompt_batch):
prompt_embeds_list = []
with torch.no_grad():
for caption in prompt_batch:
text_input_ids = self.tokenizer(
caption, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt"
).input_ids
prompt_embeds = self.text_encoder(
text_input_ids.to(self.text_encoder.device),
)[0]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=0)
return prompt_embeds
# @perfcount
@torch.no_grad()
def forward(self, lq, prompt):
prompt_embeds = self.encode_prompt([prompt])
lq_latent = self.vae.encode(lq.to(self.weight_dtype)).latent_dist.sample() * self.vae.config.scaling_factor
## add tile function
_, _, h, w = lq_latent.size()
tile_size, tile_overlap = (self.args.latent_tiled_size, self.args.latent_tiled_overlap)
if h * w <= tile_size * tile_size:
print(f"[Tiled Latent]: the input size is tiny and unnecessary to tile.")
model_pred = self.unet(lq_latent, self.timesteps, encoder_hidden_states=prompt_embeds).sample
else:
print(f"[Tiled Latent]: the input size is {lq.shape[-2]}x{lq.shape[-1]}, need to tiled")
tile_weights = self._gaussian_weights(tile_size, tile_size, 1)
tile_size = min(tile_size, min(h, w))
tile_weights = self._gaussian_weights(tile_size, tile_size, 1)
grid_rows = 0
cur_x = 0
while cur_x < lq_latent.size(-1):
cur_x = max(grid_rows * tile_size-tile_overlap * grid_rows, 0)+tile_size
grid_rows += 1
grid_cols = 0
cur_y = 0
while cur_y < lq_latent.size(-2):
cur_y = max(grid_cols * tile_size-tile_overlap * grid_cols, 0)+tile_size
grid_cols += 1
input_list = []
noise_preds = []
for row in range(grid_rows):
noise_preds_row = []
for col in range(grid_cols):
if col < grid_cols-1 or row < grid_rows-1:
# extract tile from input image
ofs_x = max(row * tile_size-tile_overlap * row, 0)
ofs_y = max(col * tile_size-tile_overlap * col, 0)
# input tile area on total image
if row == grid_rows-1:
ofs_x = w - tile_size
if col == grid_cols-1:
ofs_y = h - tile_size
input_start_x = ofs_x
input_end_x = ofs_x + tile_size
input_start_y = ofs_y
input_end_y = ofs_y + tile_size
# input tile dimensions
input_tile = lq_latent[:, :, input_start_y:input_end_y, input_start_x:input_end_x]
input_list.append(input_tile)
if len(input_list) == 1 or col == grid_cols-1:
input_list_t = torch.cat(input_list, dim=0)
# predict the noise residual
model_out = self.unet(input_list_t, self.timesteps, encoder_hidden_states=prompt_embeds.to(self.weight_dtype),).sample
input_list = []
noise_preds.append(model_out)
# Stitch noise predictions for all tiles
noise_pred = torch.zeros(lq_latent.shape, device=lq_latent.device)
contributors = torch.zeros(lq_latent.shape, device=lq_latent.device)
# Add each tile contribution to overall latents
for row in range(grid_rows):
for col in range(grid_cols):
if col < grid_cols-1 or row < grid_rows-1:
# extract tile from input image
ofs_x = max(row * tile_size-tile_overlap * row, 0)
ofs_y = max(col * tile_size-tile_overlap * col, 0)
# input tile area on total image
if row == grid_rows-1:
ofs_x = w - tile_size
if col == grid_cols-1:
ofs_y = h - tile_size
input_start_x = ofs_x
input_end_x = ofs_x + tile_size
input_start_y = ofs_y
input_end_y = ofs_y + tile_size
noise_pred[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += noise_preds[row*grid_cols + col] * tile_weights
contributors[:, :, input_start_y:input_end_y, input_start_x:input_end_x] += tile_weights
# Average overlapping areas with more than 1 contributor
noise_pred /= contributors
model_pred = noise_pred
x_denoised = self.noise_scheduler.step(model_pred, self.timesteps, lq_latent, return_dict=True).prev_sample
output_image = (self.vae.decode(x_denoised.to(self.weight_dtype) / self.vae.config.scaling_factor).sample).clamp(-1, 1)
return output_image
def _init_tiled_vae(self,
encoder_tile_size = 256,
decoder_tile_size = 256,
fast_decoder = False,
fast_encoder = False,
color_fix = False,
vae_to_gpu = True):
# save original forward (only once)
if not hasattr(self.vae.encoder, 'original_forward'):
setattr(self.vae.encoder, 'original_forward', self.vae.encoder.forward)
if not hasattr(self.vae.decoder, 'original_forward'):
setattr(self.vae.decoder, 'original_forward', self.vae.decoder.forward)
encoder = self.vae.encoder
decoder = self.vae.decoder
self.vae.encoder.forward = VAEHook(
encoder, encoder_tile_size, is_decoder=False, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
self.vae.decoder.forward = VAEHook(
decoder, decoder_tile_size, is_decoder=True, fast_decoder=fast_decoder, fast_encoder=fast_encoder, color_fix=color_fix, to_gpu=vae_to_gpu)
def _gaussian_weights(self, tile_width, tile_height, nbatches):
"""Generates a gaussian mask of weights for tile contributions"""
from numpy import pi, exp, sqrt
import numpy as np
latent_width = tile_width
latent_height = tile_height
var = 0.01
midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1
x_probs = [exp(-(x-midpoint)*(x-midpoint)/(latent_width*latent_width)/(2*var)) / sqrt(2*pi*var) for x in range(latent_width)]
midpoint = latent_height / 2
y_probs = [exp(-(y-midpoint)*(y-midpoint)/(latent_height*latent_height)/(2*var)) / sqrt(2*pi*var) for y in range(latent_height)]
weights = np.outer(y_probs, x_probs)
return torch.tile(torch.tensor(weights, device=self.device), (nbatches, self.unet.config.in_channels, 1, 1))
class OSEDiff_inference_time(torch.nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.tokenizer = AutoTokenizer.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="text_encoder")
self.noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
self.noise_scheduler.set_timesteps(1, device="cuda")
self.vae = AutoencoderKL.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="vae")
self.unet = UNet2DConditionModel.from_pretrained(self.args.pretrained_model_name_or_path, subfolder="unet")
self.weight_dtype = torch.float32
if args.mixed_precision == "fp16":
self.weight_dtype = torch.float16
osediff = torch.load(args.osediff_path)
self.load_ckpt(osediff)
# merge lora
if self.args.merge_and_unload_lora:
print(f'===> MERGE LORA <===')
self.vae = self.vae.merge_and_unload()
self.unet = self.unet.merge_and_unload()
self.unet.to("cuda", dtype=self.weight_dtype)
self.vae.to("cuda", dtype=self.weight_dtype)
self.text_encoder.to("cuda", dtype=self.weight_dtype)
self.timesteps = torch.tensor([999], device="cuda").long()
self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.cuda()
def load_ckpt(self, model):
# load unet lora
lora_conf_encoder = LoraConfig(r=model["rank_unet"], init_lora_weights="gaussian", target_modules=model["unet_lora_encoder_modules"])
lora_conf_decoder = LoraConfig(r=model["rank_unet"], init_lora_weights="gaussian", target_modules=model["unet_lora_decoder_modules"])
lora_conf_others = LoraConfig(r=model["rank_unet"], init_lora_weights="gaussian", target_modules=model["unet_lora_others_modules"])
self.unet.add_adapter(lora_conf_encoder, adapter_name="default_encoder")
self.unet.add_adapter(lora_conf_decoder, adapter_name="default_decoder")
self.unet.add_adapter(lora_conf_others, adapter_name="default_others")
for n, p in self.unet.named_parameters():
if "lora" in n or "conv_in" in n:
p.data.copy_(model["state_dict_unet"][n])
self.unet.set_adapter(["default_encoder", "default_decoder", "default_others"])
# load vae lora
vae_lora_conf_encoder = LoraConfig(r=model["rank_vae"], init_lora_weights="gaussian", target_modules=model["vae_lora_encoder_modules"])
self.vae.add_adapter(vae_lora_conf_encoder, adapter_name="default_encoder")
for n, p in self.vae.named_parameters():
if "lora" in n:
p.data.copy_(model["state_dict_vae"][n])
self.vae.set_adapter(['default_encoder'])
def encode_prompt(self, prompt_batch):
prompt_embeds_list = []
with torch.no_grad():
for caption in prompt_batch:
text_input_ids = self.tokenizer(
caption, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt"
).input_ids
prompt_embeds = self.text_encoder(
text_input_ids.to(self.text_encoder.device),
)[0]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=0)
return prompt_embeds
@torch.no_grad()
def forward(self, lq, prompt):
prompt_embeds = self.encode_prompt([prompt])
lq_latent = self.vae.encode(lq.to(self.weight_dtype)).latent_dist.sample() * self.vae.config.scaling_factor
model_pred = self.unet(lq_latent, self.timesteps, encoder_hidden_states=prompt_embeds).sample
x_denoised = self.noise_scheduler.step(model_pred, self.timesteps, lq_latent, return_dict=True).prev_sample
output_image = (self.vae.decode(x_denoised.to(self.weight_dtype) / self.vae.config.scaling_factor).sample).clamp(-1, 1)
return output_image