-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrole_prompt_roberta.py
1074 lines (938 loc) · 43 KB
/
role_prompt_roberta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
from transformers import RobertaTokenizer, RobertaModel, BertTokenizer, BertModel
from torch.utils.data import DataLoader, TensorDataset
import torch
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report
import argparse
import json
import re
from collections import Counter, defaultdict
from constraints import Constraints
import scoring_utils as util
import numpy as np
max_padding_len = 512
pretrain_model_path = './roberta-large'
de_bert_dem = 236
myF1 = 0.0
temF1 = 0.0
data_rate = 1
parser = argparse.ArgumentParser()
parser.add_argument('--num_epoch', type=int, default=20)
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('--canshu', type=str, default='canshu.pt')
parser.add_argument('--max_acc', type=float, default=0.3)
parser.add_argument('-g', '--gold_file', type=str,
help='Gold file path')
parser.add_argument('-p', '--pred_file', type=str, default=None,
help='Predictions file path')
parser.add_argument('--reuse_gold_format', dest='reuse_gold_format',
default=False, action='store_true',
help="Reuse gold file format for pred file.")
parser.add_argument('-t', '--ontology_file', type=str, default=None,
help='Path to ontology file')
parser.add_argument('-cd', '--type_constrained_decoding', dest="cd",
default=False, action='store_true',
help="Use type constrained decoding" +
'(only possible when ontology file is given')
parser.add_argument('--do_all', dest='do_all', default=False,
action='store_true', help="Do everything.")
parser.add_argument('--metrics', dest='metrics', default=False,
action='store_true',
help="Compute overall p, r, f1.")
parser.add_argument('--distance', dest='distance', default=False,
action='store_true',
help="Compute p, r, f1 by distance.")
parser.add_argument('--role_table', dest='role_table', default=False,
action='store_true',
help="Compute p, r, f1 per role.")
parser.add_argument('--confusion', dest='confusion', default=False,
action='store_true',
help="Compute an error confusion matrix.")
args = parser.parse_args()
num_epoch = args.num_epoch
lr = args.lr
canshu = args.canshu
max_acc = args.max_acc
with open('./event_role_multiplicities.txt', encoding='utf-8') as f:
event_in = [line.strip().split() for line in f.readlines()]
m_event_role = {}
for event_ in event_in:
m_event_role[event_[0]] = event_[1:]
# ================================================= 抽样 =================================================
with open('./RAMS_1.0/scorer/event_role_multiplicities.txt', encoding='utf-8') as f:
label = [line.strip().split()[0].split('.') for line in f.readlines()]
label_2 = []
for tem in label:
label_2.append(tem[0] + '.' + tem[1])
set_label = set(label_2)
# 字典化
type_to_ix = {word: i for i, word in enumerate(set_label)}
data_list = []
for _ in range(0, 38):
data_list.append([])
with open('./RAMS_1.0/data/train.jsonlines', encoding='utf-8') as f:
train_seq_in_tem = [line for line in f.readlines()]
# utf-8
del train_seq_in_tem[3781]
del train_seq_in_tem[6246]
# 其他
del train_seq_in_tem[6937]
del train_seq_in_tem[6847]
del train_seq_in_tem[5477]
del train_seq_in_tem[4476]
del train_seq_in_tem[3603]
del train_seq_in_tem[1876]
del train_seq_in_tem[1067]
# 随机打乱
import random
for seq_in_ in train_seq_in_tem:
m = eval(seq_in_)
# [[69, 69, [["life.die.deathcausedbyviolentevents", 1.0]]]]
event_type = m["evt_triggers"]
tem_split = event_type[0][2][0][0].split('.')
tem_event_type = tem_split[0] + '.' + tem_split[1]
data_list[type_to_ix[tem_event_type]].append(seq_in_)
assert type_to_ix[tem_event_type] < 38
len_ = 0
for tem in data_list:
len_ += len(tem)
print('总数据:')
print(len_)
for i in range(0, 38):
data_list[i] = data_list[i][:int(len(data_list[i]) * data_rate) + 1]
len_ = 0
for tem in data_list:
len_ += len(tem)
print('按比例采样数据:')
print(len_)
train_seq_in_1 = []
for i in range(0, 38):
train_seq_in_1 += data_list[i]
# ================================================= 数据读取预处理 =================================================
with open('./RAMS_1.0/data/dev.jsonlines', encoding='utf-8') as f:
dev_seq_in_1 = [line.strip() for line in f.readlines()]
with open('./RAMS_1.0/data/dev.jsonlines', encoding='utf-8') as f:
test_seq_in_1 = [line.strip() for line in f.readlines()]
def add_no_answer(tem_seq_in_1, tem_seq_in):
# 向读取的json列表中,添加没有答案的。第一个是原始的,第二个是修改的。
for i in range(0, len(tem_seq_in_1)):
m = eval(tem_seq_in_1[i])
result_list = m['gold_evt_links']
pad_ = 'evt089arg02'
trigger_begin = m['evt_triggers'][0][0]
trigger_end = m['evt_triggers'][0][1]
list_event = []
for list_ in m['gold_evt_links']: # 这里需要修改,引入一个额外的列表即可。第i 个test_seq_in 需要预测的数目
# [[40, 40], [28, 28], "evt089arg02place"]
list_event.append(list_[2][11:])
c = m["evt_triggers"] # [[35, 35, [['artifactexistence.damagedestroy.damage', 1.0]]]]
c_s = c[0][2][0][0] # 'artifactexistence.damagedestroy.damage'
c_ss = m_event_role[c_s] # 列表
index_c_ss = 0
while index_c_ss < len(c_ss):
for _ in range(list_event.count(c_ss[index_c_ss]), int(c_ss[index_c_ss + 1])):
tem_gold = [[trigger_begin, trigger_end], [0, -1], "evt089arg02" + c_ss[index_c_ss]]
result_list.append(tem_gold)
index_c_ss += 2
m['gold_evt_links'] = result_list
tem_seq_in.append(str(m))
train_seq_in = []
test_seq_in = []
dev_seq_in = []
add_no_answer(train_seq_in_1, train_seq_in)
add_no_answer(test_seq_in_1, test_seq_in)
add_no_answer(dev_seq_in_1, dev_seq_in)
# ================================================ 自定义F1 ============================================
class Scorer(object):
def __init__(self, args):
self.role_string_mapping = {}
self.roles = set()
self.gold = self.read_gold_file(args.gold_file)
if args.reuse_gold_format:
self.pred = self.read_gold_file(args.pred_file, confidence=False)
else:
self.pred = self.read_preds_file(args.pred_file)
self.constraints = Constraints(args.ontology_file)
def get_role_label(self, role):
if role in self.role_string_mapping:
return self.role_string_mapping[role]
else:
# Each role is of the form evt###arg##role, we only want role
role_string = re.split(r'\d+', role)[-1]
assert (role_string == role[11:])
self.role_string_mapping[role] = role_string
self.roles.add(role_string)
return role_string
def read_gold_file(self, file_path, confidence=False):
"""
Returns dict mapping doc_key -> (pred, arg, role)
"""
def process_example(json_blob):
doc_key = json_blob["doc_key"]
gold_evt = json_blob["gold_evt_links"]
sents = json_blob["sentences"]
sent_map = []
for i, sent in enumerate(sents):
for _ in sent:
sent_map.append(i)
def span_to_sent(span):
# assumes span does not cross boundaries
sent_start = sent_map[span[0]]
try:
sent_end = sent_map[span[1]]
except:
sent_end = sent_map[span[0]]
if sent_start != sent_end:
sent_end = sent_start
assert (sent_start == sent_end)
return sent_start
# There should only be one predicate
evt_triggers = json_blob["evt_triggers"]
assert (len(evt_triggers) == 1)
evt_trigger = evt_triggers[0]
evt_trigger_span = util.list_to_span(evt_trigger[:2])
evt_trigger_types = set([evt_trigger_type[0]
for evt_trigger_type in evt_trigger[2]])
gold_evt_links = [(util.list_to_span(arg[0]),
util.list_to_span(arg[1]),
self.get_role_label(arg[2])) for arg in gold_evt]
if confidence:
gold_evt_links = [(a, b, c, 0) for a, b, c in gold_evt_links]
assert (all([arg[0] == evt_trigger_span
for arg in gold_evt_links]))
return (doc_key, gold_evt_links, evt_trigger_types, span_to_sent)
jsonlines = open(file_path, 'r').readlines()
lines = [process_example(json.loads(line)) for line in jsonlines]
file_dict = {doc_key: (evt_links, evt_trigger_types, span_to_sent)
for doc_key, evt_links, evt_trigger_types, span_to_sent
in lines}
return file_dict
def read_preds_file(self, file_path):
"""
Ideally have only a single file reader
Returns dict mapping doc_key -> (pred, arg, role)
"""
def process_example(json_blob):
doc_key = json_blob["doc_key"]
pred_evt = json_blob["predictions"]
# There should only be one predicate
if len(pred_evt) == 0:
return (doc_key, [], None)
assert (len(pred_evt) == 1)
pred_evt = pred_evt[0]
# convention that the 0th one is the predicate span
evt_span = util.list_to_span(pred_evt[0])
evt_args = pred_evt[1:]
pred_args = [(evt_span,
util.list_to_span(args[:2]),
args[2],
args[3])
for args in evt_args]
return doc_key, pred_args, None
jsonlines = open(file_path, 'r').readlines()
lines = [process_example(json.loads(line)) for line in jsonlines]
file_dict = {doc_key: (evt_links, evt_trigger_types)
for doc_key, evt_links, evt_trigger_types
in lines}
return file_dict
def create_role_table(self, correct, missing, overpred):
role_table = {}
for role in self.roles:
c = float(correct[role])
m = float(missing[role])
o = float(overpred[role])
p, r, f1 = util.compute_metrics(c, m, o)
role_table[role] = {'CORRECT': c,
'MISSING': m,
'OVERPRED': o,
'PRECISION': p,
'RECALL': r,
'F1': f1}
total_c = sum(correct.values())
total_m = sum(missing.values())
total_o = sum(overpred.values())
total_p, total_r, total_f1 = util.compute_metrics(total_c,
total_m,
total_o)
totals = {'CORRECT': total_c,
'MISSING': total_m,
'OVERPRED': total_o,
'PRECISION': total_p,
'RECALL': total_r,
'F1': total_f1}
return (role_table, totals)
def evaluate(self, constrained_decoding=True):
self.metrics = None
self.distance_metrics = None
self.role_table = None
self.confusion = None
# Also computes confusion counters
global_confusion = defaultdict(Counter)
sentence_breakdowns = [{
"correct": Counter(),
"missing": Counter(),
"overpred": Counter()
} for i in range(5)]
total_lost = 0
global_correct = Counter()
global_missing = Counter()
global_overpred = Counter()
for doc_key, (gold_structure, evt_type, span_to_sent) in self.gold.items():
pred_structure = self.pred.get(doc_key, ([], None))[0]
pred_structure, lost = self.constraints.filter_preds(
pred_structure,
evt_type,
constrained_decoding)
total_lost += lost
pred_set = Counter(pred_structure)
gold_set = Counter(gold_structure)
assert (sum(pred_set.values()) == len(pred_structure))
assert (sum(gold_set.values()) == len(gold_structure))
intersection = gold_set & pred_set
missing = gold_set - pred_set
overpred = pred_set - gold_set
# Update confusion and counters
util.compute_confusion(global_confusion, intersection,
missing, overpred)
util.update(intersection, global_correct)
util.update(missing, global_missing)
util.update(overpred, global_overpred)
util.update_sentence_breakdowns(intersection, missing, overpred,
sentence_breakdowns, span_to_sent)
precision, recall, f1, _ = util.compute_from_counters(global_correct,
global_missing,
global_overpred)
distance_metrics = []
for i in range(5):
i_p, i_r, i_f1, counts = util.compute_from_counters(
sentence_breakdowns[i]["correct"],
sentence_breakdowns[i]["missing"],
sentence_breakdowns[i]["overpred"]
)
distance_metrics.append((i, (i_p, i_r, i_f1), counts))
self.metrics = {'precision': precision,
'recall': recall,
'f1': f1}
self.distance_metrics = distance_metrics
self.role_table = self.create_role_table(global_correct,
global_missing,
global_overpred)
return {"role_table": self.role_table,
"confusion": global_confusion,
"metrics": self.metrics,
"distance_metrics": self.distance_metrics}
def run_evaluation(args):
"""This is a separate wrapper around args so that other programs
can call evaluation without resorting to an os-level call
"""
scorer = Scorer(args)
return_dict = scorer.evaluate(constrained_decoding=args.cd)
if args.confusion or args.do_all:
pass
# util.print_confusion(return_dict['confusion'])
if args.role_table or args.do_all:
pass
# util.print_table(*return_dict['role_table'])
if args.distance or args.do_all:
for (i, (p, r, f1), (gold, pred)) in return_dict['distance_metrics']:
print(" {} & {} & {:.1f} & {:.1f} & {:.1f} \\\\ [p r f1 {} gold/{} pred. ]".format(
i - 2, pred, p, r, f1, gold, pred))
if args.metrics or args.do_all:
print("Precision: {:.4f} Recall: {:.4f} F1: {:.4f}".format(
return_dict['metrics']['precision'],
return_dict['metrics']['recall'],
return_dict['metrics']['f1']))
global temF1
temF1 = return_dict['metrics']['f1']
return return_dict
def sentence_add_trigger_specal_token(trigger_begin, trigger_end, s_list):
# 为句子列表添加特殊的token。
# 如 I really love you , my baby ! -> I really <t> love you </t> , my baby !
tem_s_list = s_list.copy()
tem_s_list.insert(trigger_begin, '<t>')
tem_s_list.insert(trigger_end + 2, '</t>')
return tem_s_list
def label_change_trigger_specal_token(trigger_begin, trigger_end, label_begin, label_end):
# 修正添加<t>和</t>之后,
begin_add = 0
end_add = 0
if label_begin >= trigger_begin:
begin_add += 1
if label_begin > trigger_end:
begin_add += 1
if label_end >= trigger_begin:
end_add += 1
if label_end > trigger_end:
end_add += 1
return label_begin + begin_add, label_end + end_add
# ================================================ 数据读取 ============================================
# train_seq_in = train_seq_in[:1]
def generate_input(tem_seq_in, tem_all_sentence_1_role, tem_label_1_role, tem_segment_embedding_1_role,
tem_all_role_span_for_one_sentence, tem_event_type):
# 产生 输入 结构的数据。以及列表中需要的所有东西。
for seq_in_ in tem_seq_in:
m = eval(seq_in_)
seq_in_list = [] # 列表结构的句子表示
for list_ in m['sentences']:
seq_in_list += list_
# 获取到trigger 在句向量中。 role 和 trigger 都应该标注为 1.
seq_seg = []
# 产生和原始句子一样长的,
for i in range(0, len(seq_in_list)):
seq_seg.append(0)
# trigger相应位置变成1
for i in range(m['evt_triggers'][0][0], m['evt_triggers'][0][1] + 1):
seq_seg[i] = 1
# cls + role + sep +句子 + sep 对seq_seg的后处理。
seq_seg = [0] + [1] + [0] + [0] + seq_seg + [0] + [0]
tem_tem_all_role_span_for_one_sentence = []
for event in m['gold_evt_links']:
seq_label = []
for i in range(0, len(seq_in_list)):
seq_label.append(0)
# [[31, 31], [27, 27], "evt043arg01communicator"] event的结构
begin_ = event[1][0]
end_ = event[1][1]
event_ = event[2][11:]
seq_label_ = seq_label
begin_2, end_2 = label_change_trigger_specal_token(m['evt_triggers'][0][0], m['evt_triggers'][0][1], begin_,
end_)
seq_label_.append(0)
seq_label_.append(0)
# 由于trigger的特殊字符的添加,修改位置。
for i in range(begin_2, end_2 + 1):
seq_label_[i] = 1
bert_seq_in_ = '<s> ' + event_ + ' </s> ' + (' '.join(
sentence_add_trigger_specal_token(m['evt_triggers'][0][0], m['evt_triggers'][0][1],
seq_in_list))) + ' </s>'
role_ = event_
span_ = seq_in_list[begin_: end_ + 1]
tem_all_role_span_for_one_sentence_ = [role_, span_]
tem_tem_all_role_span_for_one_sentence.append(tem_all_role_span_for_one_sentence_)
if begin_ == 0 and end_ == -1:
tem_all_sentence_1_role.append(bert_seq_in_)
tem_label_1_role.append([0] + [0] + [1] + seq_label_ + [0])
tem_segment_embedding_1_role.append(seq_seg)
else:
tem_all_sentence_1_role.append(bert_seq_in_)
tem_label_1_role.append([0] + [0] + [0] + seq_label_ + [0])
tem_segment_embedding_1_role.append(seq_seg)
for _ in m['gold_evt_links']:
tem_all_role_span_for_one_sentence.append(tem_tem_all_role_span_for_one_sentence)
tem_event_type.append(m['evt_triggers'][0][2][0][0])
assert len(tem_all_role_span_for_one_sentence) == len(tem_all_sentence_1_role)
#
train_all_sentence_1_role = []
train_label_1_role = []
train_segment_embedding_1_role = []
test_all_sentence_1_role = []
test_label_1_role = []
test_segment_embedding_1_role = []
dev_all_sentence_1_role = []
dev_label_1_role = []
dev_segment_embedding_1_role = []
train_all_role_span_for_one_sentence = []
test_all_role_span_for_one_sentence = []
dev_all_role_span_for_one_sentence = []
# 注意每一个句子产生多组 用于训练的句子。
# 存放事件类型
train_event_type = []
test_event_type = []
dev_event_type = []
generate_input(train_seq_in, train_all_sentence_1_role, train_label_1_role, train_segment_embedding_1_role,
train_all_role_span_for_one_sentence, train_event_type)
generate_input(test_seq_in, test_all_sentence_1_role, test_label_1_role, test_segment_embedding_1_role,
test_all_role_span_for_one_sentence, test_event_type)
generate_input(dev_seq_in, dev_all_sentence_1_role, dev_label_1_role, dev_segment_embedding_1_role,
dev_all_role_span_for_one_sentence, dev_event_type)
print('未引入前 样本数量:')
print(len(train_all_sentence_1_role))
print('')
def all_role_to_list(list, role, template, mrole):
# print(list)
# print(role)
# print(template)
# [['communicator', ['Bill', 'Clinton']], ['recipient', ['Congress']], ['place', ['Congress']]]
# communicator
# <communicator> communicated to <recipient> at <place> place
tem_role_ = []
for tem_ in list:
tem_role_.append(tem_[0])
# print(tem_role_)
# violator
# <violator> violated an agreement with <otherparticipant> in <place> place
c = 0
for tem_ in list:
# ['vehicle', ['RNoAF', 'P-3B']]
tem_role = tem_[0]
tem_role_spe = ' '.join(tem_[1])
if tem_role_spe == '':
tem_role_spe = 'null'
if tem_role == role and tem_role_.count(role) == 1:
continue
if tem_role == role and tem_role_.count(role) == 2:
# print('22222222222')
if mrole == 1 and c == 0:
c += 1
continue
elif mrole == 1 and c == 1:
template = template.replace('<' + tem_role + '>', '[' + tem_role + ']', 1).replace('<' + tem_role + '>',
tem_role_spe,
1).replace(
'[' + tem_role + ']', '<' + tem_role + '>', 1)
continue
elif mrole == -1 and c == 0:
template = template.replace('<' + tem_role + '>', tem_role_spe, 1)
c += 1
continue
elif mrole == -1 and c == 1:
continue
template = template.replace('<' + tem_role + '>', tem_role_spe, 1)
# print(template)
# print('-------------------------')
if tem_role_.count(role) == 2:
mrole = -1 * mrole
# print(template.split())
# ['<communicator>', 'communicated', 'to', 'Congress', 'at', 'Congress', 'place']
return template.split(), mrole
import csv
list_csv = []
with open('./aida_ontology_cleaned.csv', 'r') as f:
reader = csv.reader(f)
for line in reader:
list_csv.append(line)
list_csv = list_csv[1:]
for i in range(0, len(list_csv)):
list_csv[i][0] = list_csv[i][0].replace('unspecified', 'n/a')
# print(list_csv[i])
# artifactexistence.artifactfailure.mechanicalfailure
# 把 <arg1> mechanical artifact failed due to <arg2> instrument at <arg3> place 中的role替换为后面的。
map_aida = {}
for line in list_csv:
template_ = line[1]
# print(template_)
num_i = 0
for tem in line[2:]:
num_i += 1
if tem == '':
continue
tem = tem[11:]
tem_replace = '<arg' + str(num_i) + '>'
# print(tem, tem_replace)
template_ = template_.replace(tem_replace, '<' + tem.replace(' ', '') + '>')
if '<arg' in template_:
print('wrong!!!')
assert 1 == 2
map_aida[line[0]] = template_
# print(template_)
def add_role_meaning(tem_segment_embedding_1_role, tem_all_sentence_1_role, tem_label_1_role,
tem_role, tem_all_sentence, tem_len, tem_label, tem_segment_embedding, tem_segment_embedding_222,
tem_all_role_span_for_one_sentence, tem_event_type):
mrole = 1
# seg_embedding222 是用来训练的。
for i in range(0, len(tem_segment_embedding_1_role)):
tem_sentence = tem_all_sentence_1_role[i]
tem_tem_label = tem_label_1_role[i]
tem_segment = tem_segment_embedding_1_role[i]
# role_meaning = map_role_meaning[tem_sentence.split()[1]].lower().split()
# role_meaning = [tem_sentence.split()[1]]
# role_meaning = [trigger_, tem_sentence.split()[1]]
temKB = tem_all_role_span_for_one_sentence[i]
tem_tem_role = tem_sentence.split()[1]
role_KB = []
role_meaning_, mrole = all_role_to_list(temKB, tem_tem_role, map_aida[tem_event_type[i]], mrole)
role_i = -1
for ii in range(0, len(role_meaning_)):
tem = role_meaning_[ii]
if tem[0] == '<' and (tem[-1] == '>' or tem[-2] == '>'):
role_i = ii
break
assert role_i != -1
# role_meaning = []
# for tem in role_meaning_:
# if tem[0] == '<' and (tem[-1] == '>' or tem[-2] == '>'):
# role_meaning.append('<')
# if tem[-1] == '>':
# role_meaning.append(tem[1:-1])
# else:
# role_meaning.append(tem[1:-2])
# role_meaning.append('>')
# else:
# role_meaning.append(tem)
# role_i += 1
role_meaning = [tem_sentence.split()[1]]
role_meaning.append('</s>')
tem_role.append(tem_sentence.split()[1])
tem_all_sentence.append(' '.join([tem_sentence.split()[0]] + role_meaning + tem_sentence.split()[2:]))
tem_len.append(len(role_meaning) + 2)
tem_label.append([tem_tem_label[0]] + len(role_meaning) * [0] + tem_tem_label[2:])
# 用来标识位置的。
tem_segment_embedding.append([tem_segment[0]] + len(role_meaning) * [1] + tem_segment[2:])
# 用于训练的。
tem__ = [tem_segment[0]] + (len(role_meaning)) * [0] + tem_segment[2:]
tem_segment_embedding_222.append(tem__)
# train
train_all_sentence = []
train_label = []
train_segment_embedding = []
# test
test_all_sentence = []
test_label = []
test_segment_embedding = []
test_segment_embedding_222 = []
test_len = [] # role解释的长度 + 【CLS】 + 第一个【SEP】
test_role = []
# 对于train和dev没用,仅仅为了封装。
train_segment_embedding_222 = []
train_len = [] # role解释的长度 + 【CLS】 + 第一个【SEP】
train_role = []
dev_all_sentence = []
dev_label = []
dev_segment_embedding = []
dev_segment_embedding_222 = []
dev_len = [] # role解释的长度 + 【CLS】 + 第一个【SEP】
dev_role = []
add_role_meaning(train_segment_embedding_1_role, train_all_sentence_1_role, train_label_1_role,
train_role, train_all_sentence, train_len, train_label, train_segment_embedding_222, train_segment_embedding
, train_all_role_span_for_one_sentence, train_event_type)
add_role_meaning(test_segment_embedding_1_role, test_all_sentence_1_role, test_label_1_role,
test_role, test_all_sentence, test_len, test_label, test_segment_embedding, test_segment_embedding_222,
test_all_role_span_for_one_sentence, test_event_type)
add_role_meaning(dev_segment_embedding_1_role, dev_all_sentence_1_role, dev_label_1_role,
dev_role, dev_all_sentence, dev_len, dev_label, dev_segment_embedding_222, dev_segment_embedding,
dev_all_role_span_for_one_sentence, dev_event_type)
# ============================================ 截取 填充 tokenizer ============================================
# [CLS] Role [SEP] Sentence [SEP]
# dev_all_sentence 字符串格式
# dev_label 列表格式
# dev_segment_embedding 列表格式
def replace_sequence_for_t(lst):
for i in range(len(lst) - 2):
if lst[i:i+3] == ['Ġ<','t','>']:
lst[i:i+3] = ['<t>']
for i in range(len(lst) - 2):
if lst[i:i+3] == ['Ġ</','t','>']:
lst[i:i+3] = ['</t>']
return lst
print('loading tokenizer...')
# print(train_all_sentence[0])
# assert False
tokenizer = RobertaTokenizer.from_pretrained(pretrain_model_path)
train_feature = [
tokenizer.tokenize(line) for line
in train_all_sentence]
test_feature = [
tokenizer.tokenize(line) for line
in test_all_sentence]
dev_feature = [
tokenizer.tokenize(line) for line
in dev_all_sentence]
# 和句子的长度,原始标签的长度保持一致 的 列表,每一个位置表示tokenizer后对应的词的数量。
train_tokenizer_num = []
test_tokenizer_num = []
dev_tokenizer_num = []
def deal_tokenizer_num(tem_all_sentence, tem_tokenizer_num):
# 产生XX_tokenizer_num, 也就是每个词对应的tokenizer的个数。
for line in tem_all_sentence:
s0 = line
s3 = tokenizer.tokenize(line)
s3 = replace_sequence_for_t(s3)
seq_token_len = [1,]
for i in range(1, len(s0.split())):
if s0.split()[i]=='</s>':
seq_token_len.append(2)
elif s0.split()[i]=='</t>' or s0.split()[i]=='<t>':
seq_token_len.append(1)
else:
seq_token_len.append(len(tokenizer(s0.split()[i], add_prefix_space=True)['input_ids']) - 2)
assert sum(seq_token_len) == len(s3)
assert len(seq_token_len) == len(s0.split())
tem_tokenizer_num.append(seq_token_len)
deal_tokenizer_num(test_all_sentence, test_tokenizer_num)
deal_tokenizer_num(train_all_sentence, train_tokenizer_num)
deal_tokenizer_num(dev_all_sentence, dev_tokenizer_num)
# 根据tokenizer,对segment embedding 和 label 等的 数据进行修正。
# 进行相应的修改。因为此时必须包含trigger,如果不包含,则处理截取的窗口。
# 需要留存截取初始位置前面元素的个数,
tokenizer.add_tokens(['<t>', '</t>'])
train_feature_id = [tokenizer.convert_tokens_to_ids(replace_sequence_for_t(line)) for line in train_feature]
test_feature_id = [tokenizer.convert_tokens_to_ids(replace_sequence_for_t(line)) for line in test_feature]
dev_feature_id = [tokenizer.convert_tokens_to_ids(replace_sequence_for_t(line)) for line in dev_feature]
def deal_tokenizer_convert_to_tokenizer(tem_list, tem_tokenizer_num, tem_target_list):
# 根据 tokenizer 处理,label和segment。
for i in range(0, len(tem_list)):
# train_segment_embedding[i] 是第i个句子的列表。
tem_tem_list = []
for j in range(0, len(tem_list[i])):
# train_segment_embedding[i][j] 表示原始的位置元素。
# train_tokenizer_num[i][j] 表示存放的数目。
for k in range(0, tem_tokenizer_num[i][j]):
tem_tem_list.append(tem_list[i][j])
tem_target_list.append(tem_tem_list)
train_segment_embedding_1 = []
test_segment_embedding_1 = []
test_segment_embedding_1_222 = []
dev_segment_embedding_1 = []
deal_tokenizer_convert_to_tokenizer(train_segment_embedding, train_tokenizer_num, train_segment_embedding_1)
deal_tokenizer_convert_to_tokenizer(dev_segment_embedding, dev_tokenizer_num, dev_segment_embedding_1)
deal_tokenizer_convert_to_tokenizer(test_segment_embedding, test_tokenizer_num, test_segment_embedding_1)
deal_tokenizer_convert_to_tokenizer(test_segment_embedding_222, test_tokenizer_num, test_segment_embedding_1_222)
train_label_1 = []
test_label_1 = []
dev_label_1 = []
deal_tokenizer_convert_to_tokenizer(train_label, train_tokenizer_num, train_label_1)
deal_tokenizer_convert_to_tokenizer(test_label, test_tokenizer_num, test_label_1)
deal_tokenizer_convert_to_tokenizer(dev_label, dev_tokenizer_num, dev_label_1)
def padding_to_maxlength(max_length, padding_token_id, tem_paddinglist):
# 进行最大长度的填充
for j in range(len(tem_paddinglist)):
# 将样本数据填充至长度为 max_padding_len
i = tem_paddinglist[j]
if len(i) < max_length:
tem_paddinglist[j].extend([padding_token_id] * (max_length - len(i)))
else:
tem_paddinglist[j] = tem_paddinglist[j][0:max_length - 1] + [tem_paddinglist[j][-1]]
# feature 句子的截取 和 填充
# ====== 不同的与训练模型的padding当然只需要修改token_id的padding啦。 =========
padding_to_maxlength(max_padding_len, 0, train_feature_id)
padding_to_maxlength(max_padding_len, 0, test_feature_id)
padding_to_maxlength(max_padding_len, 0, dev_feature_id)
# seg
padding_to_maxlength(max_padding_len, 0, train_segment_embedding_1)
padding_to_maxlength(max_padding_len, 0, dev_segment_embedding_1)
padding_to_maxlength(max_padding_len, 0, test_segment_embedding_1)
padding_to_maxlength(max_padding_len, 0, test_segment_embedding_1_222)
# tokenizer_num 全部按照512.
padding_to_maxlength(512, 0, train_tokenizer_num)
padding_to_maxlength(512, 0, dev_tokenizer_num)
padding_to_maxlength(512, 0, test_tokenizer_num)
train_label = train_label_1
test_label = test_label_1
dev_label = dev_label_1
padding_to_maxlength(max_padding_len, 0, train_label)
padding_to_maxlength(max_padding_len, 0, test_label)
padding_to_maxlength(max_padding_len, 0, dev_label)
train_set = TensorDataset(torch.LongTensor(train_feature_id), torch.LongTensor(train_label),
torch.LongTensor(train_segment_embedding_1), torch.LongTensor(train_tokenizer_num))
train_loader = DataLoader(dataset=train_set, batch_size=16, shuffle=True)
test_set = TensorDataset(torch.LongTensor(test_feature_id), torch.LongTensor(test_label),
torch.LongTensor(test_segment_embedding_1), torch.LongTensor(test_tokenizer_num),
torch.LongTensor(test_segment_embedding_1_222))
test_loader = DataLoader(dataset=test_set, batch_size=16, shuffle=False)
dev_set = TensorDataset(torch.LongTensor(dev_feature_id), torch.LongTensor(dev_label),
torch.LongTensor(dev_segment_embedding_1), torch.LongTensor(dev_tokenizer_num))
dev_loader = DataLoader(dataset=dev_set, batch_size=16, shuffle=False)
import torch.nn as nn
import math
import torch
import torch.nn.functional as F
class Bert(torch.nn.Module):
def __init__(self):
super(Bert, self).__init__()
self.model = RobertaModel.from_pretrained(pretrain_model_path).cuda() # , config=modelConfig
new_embeddings = self.model.resize_token_embeddings(len(tokenizer))
self.model.shared = new_embeddings
embedding_dim = self.model.config.hidden_size
self.dropout = torch.nn.Dropout(0.5)
self.linear_0 = torch.nn.Linear(embedding_dim, de_bert_dem)
self.linear_1 = torch.nn.Linear(embedding_dim, 1)
self.linear_2 = torch.nn.Linear(embedding_dim, 1)
def forward(self, tokens, seg_embedding, attention_mask):
output = self.model(tokens, attention_mask=attention_mask)
output = output[0]
output = self.dropout(output)
# output = self.linear_0(output)
# for i in range(len(self.reasoner)):
# output = self.reasoner[i](output)
output_1 = self.linear_1(output)
output_2 = self.linear_2(output)
return output_1.squeeze(-1), output_2.squeeze(-1)
loss_func = torch.nn.CrossEntropyLoss()
model = Bert()
model = torch.nn.DataParallel(model, device_ids=[0])
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
max_acc = args.max_acc
print('start trainning....')
# model.load_state_dict(torch.load('./model_2/static_dict_0.pkl'))
def test(model, dev_dataloader):
test_loss, test_f1, n = 0.0, 0.0, 0
all_label = []
all_prediction = []
all_prediction_list_begin = []
all_prediction_list_end = []
model.eval()
with torch.no_grad():
for data, label, seg_embedding, tokenizer_num, seg_embedding222 in dev_dataloader:
out_1, out_2 = model(data.cuda(), seg_embedding222.cuda(), attention_mask=(data > 0).cuda())
# [batch_size, len]
n += 1
label_begin = []
label_end = []
tokenizer_id = 0
for label_ in label:
label_begin_ = tokenizer_num[tokenizer_id][0]
label_end_ = tokenizer_num[tokenizer_id][0]
for tem_seg_index in range(1, len(seg_embedding[tokenizer_id])):
# print(seg_embedding[tokenizer_id][tem_seg_index])
if seg_embedding[tokenizer_id][tem_seg_index] == 0:
label_begin_ = tem_seg_index
label_end_ = tem_seg_index
break
tokenizer_id += 1
for i in range(0, max_padding_len):
if label_[i] == 1:
label_begin_ = i
break
for i in range(0, max_padding_len):
if label_[max_padding_len - 1 - i] == 1:
label_end_ = max_padding_len - 1 - i
break
label_begin.append(label_begin_)
label_end.append(label_end_)
label_begin = torch.LongTensor(label_begin)
label_end = torch.LongTensor(label_end)
loss = loss_func(out_1.cuda(), label_begin.cuda()) + loss_func(out_2.cuda(), label_end.cuda())
prediction_begin = out_1.argmax(dim=1).view(-1).data.cpu().numpy().tolist()
prediction_end = out_2.argmax(dim=1).view(-1).data.cpu().numpy().tolist()
all_prediction_list_begin.extend(prediction_begin)
all_prediction_list_end.extend(prediction_end)
prediction = []
for i in range(0, len(prediction_begin)):
prediction_tem = []
for _ in range(0, max_padding_len):
prediction_tem.append(0)
for j in range(prediction_begin[i], prediction_end[i] + 1):
prediction_tem[j] = 1
prediction.extend(prediction_tem)
label = label.view(-1).squeeze().data.cpu().numpy().tolist()
test_loss += loss.item()
all_label.extend(label)
all_prediction.extend(prediction)
test_f1 = f1_score(all_label, all_prediction, average='macro')
# all_prediction_list_begin 和 all_prediction_list_end 中存放的 分别是预测的开头的结尾。
# 而且是下标,而不是第几个位置处。
# 对 test_segment_embedding 进行修正。一方面是前面的 cls 事件
# 另一方面是 子词的切分。
for i in range(0, len(test_tokenizer_num)):
# begin 进行修正。
all = 0
c = 0
for n_ in test_tokenizer_num[i]:
all += n_
c = c + n_ - 1
if all >= all_prediction_list_begin[i] + 1:
break
all_prediction_list_begin[i] = all - 1 - c - test_len[i]
# end 进行修正
all = 0
c = 0
for n_ in test_tokenizer_num[i]:
all += n_
c = c + n_ - 1
if all >= all_prediction_list_end[i] + 1:
break
all_prediction_list_end[i] = all - 1 - c - test_len[i]
# 但是前面 两个额外的,所以-2
test_index = 0
f_1 = open('1.json', mode='w', encoding='UTF-8')
for i in range(0, len(test_seq_in)):
m = eval(test_seq_in[i])
trigger_begin = m['evt_triggers'][0][0]
trigger_end = m['evt_triggers'][0][1]
result_list = []
pad_ = 'evt089arg02'
for _ in range(0, len(m['gold_evt_links'])): # 这里需要修改,引入一个额外的列表即可。第i 个test_seq_in 需要预测的数目
# [[40, 40], [28, 28], "evt089arg02place"]
if len(m['gold_evt_links']) <= 0:
break
ss = [[m['gold_evt_links'][0][0][0], m['gold_evt_links'][0][0][1]], [28, 28], ""]
ss[1][0] = all_prediction_list_begin[test_index]
ss[1][1] = all_prediction_list_end[test_index]
tem_add_1 = 0
tem_add_2 = 0
if ss[1][0] >= trigger_begin + 1:
tem_add_1 += 1
if ss[1][0] > trigger_end + 1:
tem_add_1 += 1
if ss[1][1] >= trigger_begin + 1:
tem_add_2 += 1
if ss[1][1] > trigger_end + 1:
tem_add_2 += 1
ss[1][0] = ss[1][0] - tem_add_1
ss[1][1] = ss[1][1] - tem_add_2
# ss[2] = pad_ + (test_all_sentence[test_index].split())[1]
ss[2] = pad_ + test_role[test_index]
if ss[1][0] <= ss[1][1] and ss[1][0] > 0 and ss[1][1] < len(test_all_sentence[test_index].split()) - 2 - \
test_len[test_index]:
result_list.append(ss)
test_index += 1
m['gold_evt_links'] = result_list
json.dump(m, f_1, ensure_ascii=False)
f_1.write('\n')