-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathUtils.py
39 lines (36 loc) · 1.19 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pickle
import torch
import numpy as np
def masked_mae(preds, labels, null_val=0.0):
preds[preds<1e-5]=0
labels[labels<1e-5]=0
if np.isnan(null_val):
mask = ~torch.isnan(labels)
else:
mask = (labels!=null_val)
mask = mask.float()
mask /= torch.mean((mask))
mask = torch.where(torch.isnan(mask), torch.zeros_like(mask), mask)
loss = torch.abs(preds-labels)
loss = loss * mask
loss = torch.where(torch.isnan(loss), torch.zeros_like(loss), loss)
return torch.mean(loss)
def masked_mae_loss(y_pred, y_true):
mask = (y_true != 0).float()
mask /= mask.mean()
loss = torch.abs(y_pred - y_true)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return loss.mean()
def load_pickle(pickle_file):
try:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f)
except UnicodeDecodeError as e:
with open(pickle_file, 'rb') as f:
pickle_data = pickle.load(f, encoding='latin1')
except Exception as e:
print('Unable to load data ', pickle_file, ':', e)
raise
return pickle_data