-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCommandGenerate.cpp
401 lines (343 loc) · 16.1 KB
/
CommandGenerate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
GPU plot generator for Burst coin.
Author: Cryo
Bitcoin: 138gMBhCrNkbaiTCmUhP9HLU9xwn5QKZgD
Burst: BURST-YA29-QCEW-QXC3-BKXDL
Based on the code of the official miner and dcct's plotgen.
*/
#include <future>
#include <assert.h>
#include <iostream>
#include <string>
#include <cstdlib>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include <streambuf>
#include <ctime>
#include <CL/cl.h>
#include "CommandGenerate.h"
#include "OpenclError.h"
#define HASH_SIZE 32
#define HASHES_PER_SCOOP 2
#define SCOOP_SIZE (HASHES_PER_SCOOP * HASH_SIZE)
#define SCOOPS_PER_PLOT 4096
#define PLOT_SIZE (SCOOPS_PER_PLOT * SCOOP_SIZE)
#define HASH_CAP 4096
#define OUT_CAP 100000000
#define GEN_SIZE (PLOT_SIZE + 16)
CommandGenerate::CommandGenerate()
: Command("Plot generation.") {
}
CommandGenerate::CommandGenerate(const CommandGenerate& p_command)
: Command(p_command.m_description) {
}
CommandGenerate::~CommandGenerate() throw () {
}
void CommandGenerate::help() const {
std::cerr << "Usage: ./gpuPlotGenerator generate ";
std::cerr << "<platformId> <deviceId> <staggerSize> <threadsNumber> ";
std::cerr << "<hashesNumber> <path> <address> <startNonce> <noncesNumber> ";
std::cerr << "[<path> <address> <startNonce> <noncesNumber> ...]" << std::endl;
std::cerr << " - platformId: Id of the OpenCL platform to use (see [list] command)." << std::endl;
std::cerr << " - deviceId: Id of the OpenCL device to use (see [list] command)." << std::endl;
std::cerr << " - staggerSize: Stagger size." << std::endl;
std::cerr << " - threadsNumber: Number of parallel threads for each work group." << std::endl;
std::cerr << " - hashesNumber: Number of hashes to compute for each step2 kernel calls." << std::endl;
std::cerr << " - path: Path to the plots directory." << std::endl;
std::cerr << " - address: Burst numerical address." << std::endl;
std::cerr << " - startNonce: First nonce of the plot generation." << std::endl;
std::cerr << " - noncesNumber: Number of nonces to generate." << std::endl;
std::cerr << "With multiple [<path> <address> <startNonce> <noncesNumber>] arguments " << std::endl;
std::cerr << "GPU calculation iterates through a stagger for each job and the results are " << std::endl;
std::cerr << "saved asynchronously. This is intended to be used for plotting multiple " << std::endl;
std::cerr << "mechanical drives simultaneously in order to max out GPU bandwidth." << std::endl;
}
void save_nonces(unsigned int nonceSize, std::ofstream *out, unsigned char *bufferCpu) {
assert(out->good());
for(unsigned long int offset = 0 ; offset < nonceSize ; offset += OUT_CAP) {
unsigned long int size = nonceSize - offset;
if(size > OUT_CAP) {
size = OUT_CAP;
}
out->write((const char*)(bufferCpu + offset), size);
out->flush();
}
}
int CommandGenerate::execute(const std::vector<std::string>& p_args) {
if(p_args.size() < 10) {
help();
return -1;
}
unsigned int platformId = atol(p_args[1].c_str());
unsigned int deviceId = atol(p_args[2].c_str());
unsigned int staggerSize = atol(p_args[3].c_str());
unsigned int threadsNumber = atol(p_args[4].c_str());
unsigned int hashesNumber = atol(p_args[5].c_str());
unsigned int nonceSize = PLOT_SIZE * staggerSize;
std::cerr << "Threads number: " << threadsNumber << std::endl;
std::cerr << "Hashes number: " << hashesNumber << std::endl;
unsigned int numjobs = (p_args.size() - 5)/4;
std::cerr << numjobs << " plot(s) to do." << std::endl;
unsigned int staggerMbSize = staggerSize / 4;
std::cerr << "Non-GPU memory usage: " << staggerMbSize*numjobs << "MB" << std::endl;
std::vector<std::string> paths(numjobs);
std::vector<std::ofstream *> out_files(numjobs);
std::vector<unsigned long long> addresses(numjobs);
std::vector<unsigned long long> startNonces(numjobs);
std::vector<unsigned long long> endNonces(numjobs);
std::vector<unsigned int> noncesNumbers(numjobs);
std::vector<unsigned char*> buffersCpu(numjobs);
std::vector<bool> saving_thread_flags(numjobs);
std::vector<std::future<void>> save_threads(numjobs);
unsigned long long maxNonceNumber = 0;
unsigned long long totalNonces = 0;
int returnCode = 0;
try {
for (unsigned int i = 0; i < numjobs; i++) {
std::cerr << "----" << std::endl;
std::cerr << "Job number " << i << std::endl;
unsigned int argstart = 6 + i*4;
paths[i] = std::string(p_args[argstart]);
addresses[i] = strtoull(p_args[argstart+1].c_str(), NULL, 10);
startNonces[i] = strtoull(p_args[argstart+2].c_str(), NULL, 10);
noncesNumbers[i] = atol(p_args[argstart+3].c_str());
maxNonceNumber = std::max(maxNonceNumber, (long long unsigned int)noncesNumbers[i]);
totalNonces += noncesNumbers[i];
std::ostringstream outFile;
outFile << paths[i] << "/" << addresses[i] << "_" << startNonces[i] << "_" << \
noncesNumbers[i] << "_" << staggerSize;
std::ios_base::openmode file_mode = std::ios::out | std::ios::binary | std::ios::trunc;
out_files[i] = new std::ofstream(outFile.str(), file_mode);
assert(out_files[i]);
if(noncesNumbers[i] % staggerSize != 0) {
noncesNumbers[i] -= noncesNumbers[i] % staggerSize;
noncesNumbers[i] += staggerSize;
}
endNonces[i] = startNonces[i] + noncesNumbers[i];
unsigned int noncesGbSize = noncesNumbers[i] / 4 / 1024;
std::cerr << "Path: " << outFile.str() << std::endl;
std::cerr << "Nonces: " << startNonces[i] << " to " << endNonces[i] << " (" << noncesGbSize << " GB)" << std::endl;
std::cerr << "Creating CPU buffer" << std::endl;
buffersCpu[i] = new unsigned char[nonceSize];
if(!buffersCpu[i]) {
throw std::runtime_error("Unable to create the CPU buffer (probably out of host memory.)");
}
saving_thread_flags[i] = false;
std::cerr << "----" << std::endl;
}
cl_platform_id platforms[4];
cl_uint platformsNumber;
cl_device_id devices[32];
cl_uint devicesNumber;
cl_context context = 0;
cl_command_queue commandQueue = 0;
cl_mem bufferGpuGen = 0;
cl_mem bufferGpuScoops = 0;
cl_program program = 0;
cl_kernel kernelStep1 = 0;
cl_kernel kernelStep2 = 0;
cl_kernel kernelStep3 = 0;
int error;
std::cerr << "Retrieving OpenCL platforms" << std::endl;
error = clGetPlatformIDs(4, platforms, &platformsNumber);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to retrieve the OpenCL platforms");
}
if(platformId >= platformsNumber) {
throw std::runtime_error("No platform found with the provided id");
}
std::cerr << "Retrieving OpenCL GPU devices" << std::endl;
error = clGetDeviceIDs(platforms[platformId], CL_DEVICE_TYPE_CPU | CL_DEVICE_TYPE_GPU, 32, devices, &devicesNumber);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to retrieve the OpenCL devices");
}
if(deviceId >= devicesNumber) {
throw std::runtime_error("No device found with the provided id");
}
std::cerr << "Creating OpenCL context" << std::endl;
context = clCreateContext(0, 1, &devices[deviceId], NULL, NULL, &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL context");
}
std::cerr << "Creating OpenCL command queue" << std::endl;
commandQueue = clCreateCommandQueue(context, devices[deviceId], 0, &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL command queue");
}
std::cerr << "Creating OpenCL GPU generation buffer" << std::endl;
bufferGpuGen = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_uchar) * GEN_SIZE * staggerSize, 0, &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL GPU generation buffer");
}
std::cerr << "Creating OpenCL GPU scoops buffer" << std::endl;
bufferGpuScoops = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_uchar) * nonceSize, 0, &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL GPU scoops buffer");
}
std::cerr << "Creating OpenCL program" << std::endl;
std::string source = loadSource("kernel/nonce.cl");
const char* sources[] = {source.c_str()};
size_t sourcesLength[] = {source.length()};
program = clCreateProgramWithSource(context, 1, sources, sourcesLength, &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL program");
}
std::cerr << "Building OpenCL program" << std::endl;
error = clBuildProgram(program, 1, &devices[deviceId], "-I kernel", 0, 0);
if(error != CL_SUCCESS) {
size_t logSize;
clGetProgramBuildInfo(program, devices[deviceId], CL_PROGRAM_BUILD_LOG, 0, 0, &logSize);
char* log = new char[logSize];
clGetProgramBuildInfo(program, devices[deviceId], CL_PROGRAM_BUILD_LOG, logSize, (void*)log, 0);
std::cerr << log << std::endl;
delete[] log;
throw OpenclError(error, "Unable to build the OpenCL program");
}
std::cerr << "Creating OpenCL step1 kernel" << std::endl;
kernelStep1 = clCreateKernel(program, "nonce_step1", &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL kernel");
}
std::cerr << "Setting OpenCL step1 kernel static arguments" << std::endl;
error = clSetKernelArg(kernelStep1, 2, sizeof(cl_mem), (void*)&bufferGpuGen);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to set the OpenCL kernel arguments");
}
std::cerr << "Creating OpenCL step2 kernel" << std::endl;
kernelStep2 = clCreateKernel(program, "nonce_step2", &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL kernel");
}
std::cerr << "Setting OpenCL step2 kernel static arguments" << std::endl;
error = clSetKernelArg(kernelStep2, 1, sizeof(cl_mem), (void*)&bufferGpuGen);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to set the OpenCL kernel arguments");
}
std::cerr << "Creating OpenCL step3 kernel" << std::endl;
kernelStep3 = clCreateKernel(program, "nonce_step3", &error);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to create the OpenCL kernel");
}
std::cerr << "Setting OpenCL step3 kernel static arguments" << std::endl;
error = clSetKernelArg(kernelStep3, 0, sizeof(cl_uint), (void*)&staggerSize);
error = clSetKernelArg(kernelStep3, 1, sizeof(cl_mem), (void*)&bufferGpuGen);
error = clSetKernelArg(kernelStep3, 2, sizeof(cl_mem), (void*)&bufferGpuScoops);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to set the OpenCL kernel arguments");
}
size_t globalWorkSize = staggerSize;
size_t localWorkSize = (staggerSize < threadsNumber) ? staggerSize : threadsNumber;
time_t startTime = time(0);
unsigned int totalNoncesCompleted = 0;
for (unsigned long long nonce_ordinal = 0; nonce_ordinal < maxNonceNumber; nonce_ordinal += staggerSize) {
for (unsigned int jobnum = 0; jobnum < paths.size(); jobnum += 1) {
unsigned long long nonce = startNonces[jobnum] + nonce_ordinal;
if (nonce > endNonces[jobnum]) {
break;
}
std::cout << "Running with start nonce " << nonce << std::endl;
// Is a cl_ulong always an unsigned long long?
unsigned int error = 0;
error = clSetKernelArg(kernelStep1, 0, sizeof(cl_ulong), (void*)&addresses[jobnum]);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to set the OpenCL step1 kernel arguments");
}
error = clSetKernelArg(kernelStep1, 1, sizeof(cl_ulong), (void*)&nonce);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to set the OpenCL step1 kernel arguments");
}
error = clEnqueueNDRangeKernel(commandQueue, kernelStep1, 1, 0, &globalWorkSize, &localWorkSize, 0, 0, 0);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Error in step1 kernel launch");
}
unsigned int hashesSize = hashesNumber * HASH_SIZE;
for(int hashesOffset = PLOT_SIZE ; hashesOffset > 0 ; hashesOffset -= hashesSize) {
error = clSetKernelArg(kernelStep2, 0, sizeof(cl_ulong), (void*)&nonce);
error = clSetKernelArg(kernelStep2, 2, sizeof(cl_uint), (void*)&hashesOffset);
error = clSetKernelArg(kernelStep2, 3, sizeof(cl_uint), (void*)&hashesNumber);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Unable to set the OpenCL step2 kernel arguments");
}
error = clEnqueueNDRangeKernel(commandQueue, kernelStep2, 1, 0, &globalWorkSize, &localWorkSize, 0, 0, 0);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Error in step2 kernel launch");
}
error = clFinish(commandQueue);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Error in step2 kernel finish");
}
}
totalNoncesCompleted += staggerSize;
double percent = 100.0 * (double)totalNoncesCompleted / totalNonces;
time_t currentTime = time(0);
double speed = (double)totalNoncesCompleted / difftime(currentTime, startTime) * 60.0;
double estimatedTime = (double)(totalNonces - totalNoncesCompleted) / speed;
std::cerr << "\r" << percent << "% (" << totalNoncesCompleted << "/" << totalNonces << " nonces)";
std::cerr << ", " << speed << " nonces/minutes";
std::cerr << ", ETA: " << ((int)estimatedTime / 60) << "h" << ((int)estimatedTime % 60) << "m" << ((int)(estimatedTime * 60.0) % 60) << "s";
std::cerr << "... ";
error = clEnqueueNDRangeKernel(commandQueue, kernelStep3, 1, 0, &globalWorkSize, &localWorkSize, 0, 0, 0);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Error in step3 kernel launch");
}
if (saving_thread_flags[jobnum]) {
save_threads[jobnum].wait(); // Wait for last job to finish
saving_thread_flags[jobnum] = false;
}
error = clEnqueueReadBuffer(commandQueue, bufferGpuScoops, CL_TRUE, 0, sizeof(cl_uchar) * nonceSize, buffersCpu[jobnum], 0, 0, 0);
if(error != CL_SUCCESS) {
throw OpenclError(error, "Error in synchronous read");
}
saving_thread_flags[jobnum] = true;
save_threads[jobnum] = std::async(std::launch::async, save_nonces, nonceSize, out_files[jobnum], buffersCpu[jobnum]);
}
}
//Clean up
for (unsigned int i = 0; i < paths.size(); i += 1) {
if (saving_thread_flags[i]) {
std::cerr << "waiting for final save to " << paths[i] << " to finish" << std::endl;
save_threads[i].wait();
saving_thread_flags[i] = false;
std::cerr << "done waiting for final save" << std::endl;
if (buffersCpu[i]) {
delete[] buffersCpu[i];
}
}
}
if(kernelStep3) { clReleaseKernel(kernelStep3); }
if(kernelStep2) { clReleaseKernel(kernelStep2); }
if(kernelStep1) { clReleaseKernel(kernelStep1); }
if(program) { clReleaseProgram(program); }
if(bufferGpuGen) { clReleaseMemObject(bufferGpuGen); }
if(bufferGpuScoops) { clReleaseMemObject(bufferGpuScoops); }
if(commandQueue) { clReleaseCommandQueue(commandQueue); }
if(context) { clReleaseContext(context); }
time_t currentTime = time(0);
double elapsedTime = difftime(currentTime, startTime) / 60.0;
double speed = (double)totalNonces / elapsedTime;
std::cerr << "\r100% (" << totalNonces << "/" << totalNonces << " nonces)";
std::cerr << ", " << speed << " nonces/minutes";
std::cerr << ", " << ((int)elapsedTime / 60) << "h" << ((int)elapsedTime % 60) << "m" << ((int)(elapsedTime * 60.0) % 60) << "s";
std::cerr << " " << std::endl;
} catch(const OpenclError& ex) {
std::cerr << "[ERROR] [" << ex.getCode() << "] " << ex.what() << std::endl;
returnCode = -1;
} catch(const std::exception& ex) {
std::cerr << "[ERROR] " << ex.what() << std::endl;
returnCode = -1;
}
return returnCode;
}
std::string CommandGenerate::loadSource(const std::string& p_file) throw (std::exception) {
std::ifstream stream(p_file, std::ios::in);
if(stream.fail()) {
throw std::runtime_error("Unable to open the source file");
}
std::string str;
stream.seekg(0, std::ios::end);
str.reserve(stream.tellg());
stream.seekg(0, std::ios::beg);
str.assign(std::istreambuf_iterator<char>(stream), std::istreambuf_iterator<char>());
return str;
}