-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmethod_ard_stt.m
executable file
·154 lines (133 loc) · 4.44 KB
/
method_ard_stt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
%----------------------------------------------------
%
% ARX identification with ARD priors and Student t-noise
%
%----------------------------------------------------
%
% Hierarchical Bayesian ARX models for robust inference
%
% Authors: Johan Dahlin, Fredrik Lindsten,
% Thomas B. Schön, Adrian Wills.
%
% Copyright (c) 2012 Johan Dahlin [ johan.dahlin (at) liu.se ]
% Copyright (c) 2012 Fredrik Lindsten [ lindsten (at) isy.liu.se ]
%
% Presented at 16th IFAC Symposium on System Identification,
% Brussels, Belgium, 2012
%
%----------------------------------------------------
function [mA mB] = method_ard_stt(maxOrder,data,robust)
%% Initialise
y = data.y(maxOrder+1:end)';
T = length(y);
prior.a = 0.01;
prior.b = 0.01;
proposal.s2 = 0.05; % Variance for DOF random walk - alternative to Stirling
% Allocate memory
miter = 4000;
A = zeros(maxOrder, miter); % A coefficients
B = zeros(maxOrder, miter); % B coefficients
delta = zeros(2*maxOrder, miter); % A/B precisions
S = zeros(2, miter); % lambda, nu
E = zeros(T,miter);
% Initialise
S(:,1) = [0.1 ; 10];
delta(:,1) = 0.1;
% Build the maximal regression matrix
Phi = buildPhi2(data.y', data.u', maxOrder, maxOrder);
Phi = Phi(maxOrder+1:end,:);
% We also have the latent states, but these are not logged
z = 10*ones(T,1); % z_{r+1:T}
%% Run loop
acceptprob = zeros(2,miter); % Log
acceptprob(:,1) = 1;
CC = 1;
for(i = 2:miter)
if(i >= 1000*CC)
%fprintf('%i :',i);
CC = CC + 1;
end
% ---------------------- GIBBS STEP: Sample {theta} ----------------------
Si = S(2,i-1)*z; % (Diagonal of) Precision matrix for y_{1:T}
if(~robust)
Ci = Phi'*(Phi.*repmat(Si,[1 2*maxOrder])) + diag(delta(:,i-1));
mu = (Ci\Phi')*(y.*Si);
theta = mvnrnd(mu', inv((Ci+Ci')/2),1)';
else
[mu,R] = meancovhelper(Phi, y, Si, delta(:,i-1));
theta = mu + R*randn(2*maxOrder,1);
end
A(:,i) = theta(1:maxOrder);
B(:,i) = theta(maxOrder+1:end);
% Compute prediction error
e = y - Phi*theta; % Prediction error - used below
E(:,i) = e;
% ---------------------- GIBBS STEP: Sample {z} ----------------------
a = S(2,i-1)/2 + 1/2;
b = S(2,i-1)/2 + S(1,i-1)/2*e.^2;
z = gamrnd(a,1./b); % Sample from gamma distribution. N.B. inverse of b is used as parameter (scale parameter)
% ---------------------- MH-STEP: Sample {nu} ----------------------
nu = S(2,i-1);
nup = -1;
while(nup < 0)
nup = nu + sqrt(proposal.s2)*randn(1);
end
nup = nu + sqrt(proposal.s2)*randn(1);
lp = -T*gamma(nu/2) + T*nu/2*log(nu/2) + nu/2*sum(log(z)) - nu/2*sum(z) + (prior.a - 1)*log(nu) - prior.b*nu;
lpp = -T*gamma(nup/2) + T*nup/2*log(nup/2) + nup/2*sum(log(z)) - nup/2*sum(z) + (prior.a - 1)*log(nup) - prior.b*nup;
prob = exp(lpp - lp);
acceptprob(i) = min(1,prob);
U = rand(1);
accept = (U < prob);
if(accept)
S(2,i) = nup;
else
S(2,i) = nu;
end
% ---------------------- GIBBS STEP: Sample {lambda,sa2i} ----------------------
% Innovation precision
a = prior.a + 1/2*T;
b = prior.b + 1/2*e'*(e.*z);
S(1,i) = gamrnd(a,1/b);
% AR coefficient precision
a = prior.a + 1/2;
b = prior.b + 1/2*theta.^2;
delta(:,i) = gamrnd(a,1./b);
end
%% Average
burnin=floor(miter/2);
mA=mean(A(:,burnin+1:end),2); mB=mean(B(:,burnin+1:end),2);
mna=maxOrder; mnb=maxOrder;
end
%----------------------------------------------------
% Help function for covariance calculation
%----------------------------------------------------
function [mu, x22, v] = meancovhelper(Phi, y, Si, delta)
[T,nth] = size(Phi);
H = Phi./repmat(delta',T,1);
M = [diag(1./Si) + Phi*H' H ;
H' diag(1./delta)];
accepted = false;
while(~accepted)
try
tmp = chol(M);
catch
warning('Regularising M');
M = M-min(eig(M))*eye(length(M));
tmp = chol(M);
end
accepted = true;
end
x11 = tmp(1:T, 1:T);
x22 = tmp(T+1:end, T+1:end);
% Compute the mean by backsubstitution
ss = x11'\y;
rr = x11\ss;
mu = Phi'*rr;
mu = mu./delta;
% Compute vector used in acceptance probability computation
v = x22'\mu;
end
%----------------------------------------------------
% End of File
%----------------------------------------------------