-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvalidate.py
198 lines (163 loc) · 7.14 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import glob
import logging
import numpy as np
import os
import sys
import time
import torch
from models.graph2seq_series_rel import Graph2SeqSeriesRel
from models.seq2seq import Seq2Seq
from torch.utils.data import DataLoader
from utils import parsing
from utils.data_utils import canonicalize_smiles, load_vocab, S2SDataset, G2SDataset
from utils.train_utils import log_tensor, param_count, set_seed, setup_logger
def get_predict_parser():
parser = argparse.ArgumentParser("predict")
parsing.add_common_args(parser)
parsing.add_preprocess_args(parser)
parsing.add_train_args(parser)
parsing.add_predict_args(parser)
return parser
def main(args):
start = time.time()
parsing.log_args(args)
os.makedirs(os.path.join("./results", args.data_name), exist_ok=True)
# initialization ----------------- model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
checkpoints = glob.glob(os.path.join(args.load_from, "*.pt"))
checkpoints = sorted(
checkpoints,
key=lambda ckpt: int(ckpt.split(".")[-2].split("_")[-1]),
reverse=True
)
checkpoints = [ckpt for ckpt in checkpoints
if (args.checkpoint_step_start <= int(ckpt.split(".")[-2].split("_")[0]))
and (args.checkpoint_step_end >= int(ckpt.split(".")[-2].split("_")[0]))]
model = None
val_dataset = None
vocab_tokens = None
smis_tgt = []
for ckpt_i, checkpoint in enumerate(checkpoints):
logging.info(f"Loading from {checkpoint}")
state = torch.load(checkpoint)
pretrain_args = state["args"]
pretrain_state_dict = state["state_dict"]
if model is None:
# initialization ----------------- model
logging.info(f"Model is None, building model")
logging.info(f"First logging args for training")
parsing.log_args(pretrain_args)
for attr in ["mpn_type", "rel_pos"]:
try:
getattr(pretrain_args, attr)
except AttributeError:
setattr(pretrain_args, attr, getattr(args, attr))
assert args.model == pretrain_args.model, f"Pretrained model is {pretrain_args.model}!"
if args.model == "s2s":
model_class = Seq2Seq
dataset_class = S2SDataset
elif args.model == "g2s_series_rel":
model_class = Graph2SeqSeriesRel
dataset_class = G2SDataset
args.compute_graph_distance = True
assert args.compute_graph_distance
else:
raise ValueError(f"Model {args.model} not supported!")
# initialization ----------------- vocab
vocab = load_vocab(pretrain_args.vocab_file)
vocab_tokens = [k for k, v in sorted(vocab.items(), key=lambda tup: tup[1])]
model = model_class(pretrain_args, vocab)
logging.info(model)
logging.info(f"Number of parameters = {param_count(model)}")
# initialization ----------------- data
val_dataset = dataset_class(pretrain_args, file=args.valid_bin)
val_dataset.batch(
batch_type=args.batch_type,
batch_size=args.predict_batch_size
)
with open(args.val_tgt, "r") as f:
total = sum(1 for _ in f)
with open(args.val_tgt, "r") as f:
for line_tgt in f:
smi_tgt = "".join(line_tgt.split())
smi_tgt = canonicalize_smiles(smi_tgt)
smis_tgt.append(smi_tgt)
model.load_state_dict(pretrain_state_dict)
logging.info(f"Loaded pretrained state_dict from {checkpoint}")
model.to(device)
model.eval()
val_loader = DataLoader(
dataset=val_dataset,
batch_size=1,
shuffle=False,
collate_fn=lambda _batch: _batch[0],
pin_memory=True
)
# prediction
all_predictions = []
with torch.no_grad():
for val_idx, val_batch in enumerate(val_loader):
if val_idx % args.log_iter == 0:
logging.info(f"Doing inference on val step {val_idx}, time: {time.time() - start: .2f} s")
sys.stdout.flush()
val_batch.to(device)
results = model.predict_step(
reaction_batch=val_batch,
batch_size=val_batch.size,
beam_size=args.beam_size,
n_best=args.n_best,
temperature=args.temperature,
min_length=args.predict_min_len,
max_length=args.predict_max_len
)
for predictions in results["predictions"]:
smis = []
for prediction in predictions:
predicted_idx = prediction.detach().cpu().numpy()
predicted_tokens = [vocab_tokens[idx] for idx in predicted_idx[:-1]]
smi = " ".join(predicted_tokens)
smis.append(smi)
smis = ",".join(smis)
all_predictions.append(f"{smis}\n")
# saving prediction results
result_file = f"{args.result_file}.{ckpt_i}"
result_stat_file = f"{args.result_file}.stat.{ckpt_i}"
with open(result_file, "w") as of:
of.writelines(all_predictions)
# scoring
invalid = 0
accuracies = np.zeros([total, args.n_best], dtype=np.float32)
with open(result_file, "r") as f_predict:
for i, (smi_tgt, line_predict) in enumerate(zip(smis_tgt, f_predict)):
if smi_tgt == "CC": # problematic SMILES
continue
# smi_predict = "".join(line_predict.split())
line_predict = "".join(line_predict.split())
smis_predict = line_predict.split(",")
smis_predict = [canonicalize_smiles(smi, trim=False, suppress_warning=True) for smi in smis_predict]
if not smis_predict[0]:
invalid += 1
smis_predict = [smi for smi in smis_predict if smi and not smi == "CC"]
for j, smi in enumerate(smis_predict):
if smi == smi_tgt:
accuracies[i, j:] = 1.0
break
with open(result_stat_file, "w") as of:
line = f"Total: {total}, top 1 invalid: {invalid / total * 100: .2f} %"
logging.info(line)
of.write(f"{line}\n")
mean_accuracies = np.mean(accuracies, axis=0)
for n in range(args.n_best):
line = f"Top {n+1} accuracy: {mean_accuracies[n] * 100: .2f} %"
logging.info(line)
of.write(f"{line}\n")
if __name__ == "__main__":
predict_parser = get_predict_parser()
args = predict_parser.parse_args()
# set random seed (just in case)
set_seed(args.seed)
# logger setup
logger = setup_logger(args, warning_off=True)
torch.set_printoptions(profile="full")
main(args)