forked from matthagy/titanic-families
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
181 lines (145 loc) · 4.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
'''Provides a convenient interface to the training and testing data
'''
from __future__ import division
import os.path
import csv
from functools import wraps
from collections import namedtuple
import numpy as np
csv_dir = os.path.join(os.path.dirname(__file__), 'data/csv')
train_path = os.path.join(csv_dir, 'train.csv')
test_path = os.path.join(csv_dir, 'test.csv')
attribute_types = dict(
survived='bool',
pclass=('nominal', ('1','2','3')),
name='string',
sex=('nominal', ('male','female')),
age='float',
sibsp='int',
parch='int',
ticket='string',
fare='float',
cabin='string',
embarked=('nominal', ('C','S','Q')),
)
def process_bool(values, args):
mp = {'0':False, '1':True}
return np.array([mp[v] for v in values], dtype=np.bool)
def process_nominal(values, args):
acc = []
for v in values:
if not v:
acc.append(-1)
elif v in args:
acc.append(args.index(v))
else:
raise ValueError('bad value %r, not in %s' % (v, args))
return np.array(acc, dtype=np.int)
def process_int(values, args):
return process_number(values, int)
def process_float(values, args):
return process_number(values, float)
def process_number(values, tp):
acc = []
for v in values:
if not v:
acc.append(-1)
else:
v = tp(v)
if v < 0:
raise ValueError('negative number')
acc.append(v)
return np.array(acc, dtype=tp)
def process_float(values, args):
return np.array([float(v) if v else -1.0 for v in values], dtype=np.double)
def process_string(values, args):
return np.array(values)
attribute_types_processors=dict(
bool=process_bool,
nominal=process_nominal,
int=process_int,
float=process_float,
string=process_string)
def memorize(func):
@wraps(func)
def wrapper(*args):
try:
return cache[args]
except KeyError:
result = cache[args] = func(*args)
return result
wrapper.cache = cache = {}
return wrapper
@memorize
def get_entry_class(keys):
return namedtuple('Entry', keys)
class TitanicDataSet(object):
def __init__(self, keys, columns, is_train):
assert len(keys) == len(columns)
assert len(set(map(len, columns))) == 1
self.keys = keys
self.columns = columns
self.is_train = is_train
self.entry_class = get_entry_class(keys)
def __reduce__(self):
return (self.__class__, (self.keys, self.columns, self.is_train))
def __len__(self):
return len(self.columns[0])
def get_column(self, key, copy=True):
try:
i = self.keys.index(key)
except ValueError:
raise ValueError("no such column %r" % (key,))
return self.columns[i].copy() if copy else self.columns[i]
def __getattr__(self, name):
if name in self.keys:
return self.get_column(name, copy=False)
raise AttributeError(name)
def get_attributes(self, *keys):
return np.array([self.get_column(key) for key in keys],
copy=True,
dtype=float).T
def splice(self, mask):
return self.__class__(self.keys,
[c[mask] for c in self.columns],
self.is_train)
def get_entry(self, i):
return self.entry_class(*(c[i] for c in self.columns))
def iter_entries(self):
for i in xrange(len(self)):
yield self.get_entry(i)
def copy(self):
return self.__class__(self.keys,
[c.copy() for c in self.columns],
self.is_train)
@classmethod
@memorize
def get_train(cls):
return cls.load_train().copy()
@classmethod
@memorize
def get_test(cls):
return cls.load_test().copy()
@classmethod
def load_train(cls):
return cls.load(train_path, True)
@classmethod
def load_test(cls):
return cls.load(test_path, False)
@classmethod
def load(cls, path, is_train):
with open(path) as fp:
reader = csv.reader(fp)
rows = list(reader)
keys = tuple(rows.pop(0))
columns = zip(*rows)
columns = [cls.process_column(key, column) for key,column in zip(keys, columns)]
return cls(keys, columns, is_train)
@classmethod
def process_column(cls, key, column):
tp = attribute_types[key]
if isinstance(tp, tuple):
tp,args = tp
else:
args = ()
return attribute_types_processors[tp](column, args)