-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathpredict.py
50 lines (43 loc) · 2.04 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
import numpy as np
def predict(model, model_dir, results_dir, features_path, vid_list_file, epoch, actions_dict, device, sample_rate, args):
# collect arguments
verbose = args.verbose
use_best_model = args.use_best_model
# multi-GPU
if args.multi_gpu and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.eval()
with torch.no_grad():
model.to(device)
if use_best_model == 'source':
model.load_state_dict(torch.load(model_dir + "/acc_best_source.model"))
elif use_best_model == 'target':
model.load_state_dict(torch.load(model_dir + "/acc_best_target.model"))
else:
model.load_state_dict(torch.load(model_dir + "/epoch-" + str(epoch) + ".model"))
file_ptr = open(vid_list_file, 'r')
list_of_vids = file_ptr.read().split('\n')[:-1] # testing list
file_ptr.close()
for vid in list_of_vids:
if verbose:
print(vid)
features = np.load(features_path + vid.split('.')[0] + '.npy')
features = features[:, ::sample_rate]
input_x = torch.tensor(features, dtype=torch.float)
input_x.unsqueeze_(0)
input_x = input_x.to(device)
mask = torch.ones_like(input_x)
predictions, _, _, _, _, _, _, _, _, _, _, _, _, _ = model(input_x, input_x, mask, mask, [0, 0], reverse=False)
_, predicted = torch.max(predictions[:, -1, :, :].data, 1)
predicted = predicted.squeeze()
recognition = []
for i in range(predicted.size(0)):
recognition = np.concatenate((recognition,
[list(actions_dict.keys())[list(actions_dict.values()).index(predicted[i].item())]] * sample_rate))
f_name = vid.split('/')[-1].split('.')[0]
f_ptr = open(results_dir + "/" + f_name, "w")
f_ptr.write("### Frame level recognition: ###\n")
f_ptr.write(' '.join(recognition))
f_ptr.close()