-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathattack.py
executable file
·312 lines (291 loc) · 12.8 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python
from __future__ import division, unicode_literals
import os
import argparse
import math
import codecs
import torch
from torch.autograd import Variable
import numpy as np
from itertools import count
import onmt.io
import onmt.translate
import onmt
import onmt.ModelConstructor
import onmt.modules
import opts
import torch.nn as nn
parser = argparse.ArgumentParser(
description='attack.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.attack_opts(parser)
opt = parser.parse_args()
def attack(all_word_embedding, label_onehot, translator, src, batch, new_embedding, input_embedding, modifier, const, GROUP_LASSO, TARGETED, GRAD_REG, NN):
if TARGETED:
lr_a = [0.1,0.5]
else:
lr_a = [2]
if NN:
lr_a= [0.1]
cur_best = Variable(torch.zeros(1)).cuda()
cur_best.data[0] = 999
cur_best_modi = 999
# FLAG = False
m = label_onehot.size()[0]
for lr in lr_a:
CFLAG = True
for k in range(200):
#loss1=0
new_word_list=[]
loss1 = Variable(torch.zeros(1)).cuda()
loss2 = Variable(torch.zeros(1)).cuda()
if NN:
for i in range(input_embedding.size()[0]):
new_embedding[i] = modifier[i] + input_embedding[i]
else:
for i in range(input_embedding.size()[0]):
new_embedding[i] = modifier[i] + input_embedding[i]
new_placeholder = new_embedding[i].data
temp_place = new_placeholder.expand_as(all_word_embedding)
new_dist = torch.norm(temp_place - all_word_embedding.data, 2 ,2)
v_dist = Variable(new_dist, requires_grad = True)
_ , new_word = torch.min(new_dist,0)
min_dist, _ = torch.min(v_dist, 0)
new_word_list.append(new_word)
new_embedding.data[i] = all_word_embedding[new_word[0]].data
del temp_place
output_a, attn, output_i= translator.getOutput(new_embedding, src, batch)
if TARGETED:
n = output_a.size()[0]
mask = None
for iter_ind in range(m):
if mask:
if mask == output_a.size()[0]-1:
#print("b")
#print(t_loss.data[0],mask,output_a.size()[0], fake_onehot.size()[0])
output_a = output_a[0:mask,:]
fake_onehot = fake_onehot[0:mask,:]
else:
output_a = torch.cat((output_a[0:mask,:],output_a[mask+1:,:]))
fake_onehot = torch.cat((fake_onehot[0:mask,:], fake_onehot[mask+1:,:]))
mask = None
placeholder = label_onehot[iter_ind].clone()
fake_onehot = placeholder.expand_as(output_a)
real, reali = torch.max (torch.mul(output_a, fake_onehot),1)
other, otheri = torch.max(torch.mul(output_a, (1-fake_onehot)) - fake_onehot*10000, 1)
t_loss, t_pos = torch.min(torch.clamp(other-real, min=0),0)
if t_loss.data[0] < 0:
mask = t_pos.data[0]
# print(mask)
# if FLAG:
# print(t_loss.data)
loss1 = loss1 + t_loss
else:
if output_a.size()[0] > label_onehot.size()[0]:
output_a = output_a[:label_onehot.size()[0],:]
else:
label_onehot = label_onehot[:output_a.size()[0],:]
real, reali = torch.max(torch.mul(output_a, label_onehot),1)
other, otheri = torch.max(torch.mul(output_a, (1-label_onehot)),1)
loss1 = torch.sum(torch.clamp(real-other,min=0))
print(loss1.data[0],"\t", torch.norm(modifier.data))
if loss1.data[0]<= 0 :
#print(loss1.data[0],"\t", torch.norm(modifier.data))
if torch.norm(modifier.data) < cur_best_modi:
print(loss1.data[0],"\t", torch.norm(modifier.data))
cur_best_modi = torch.norm(modifier.data)
best_word = new_word_list
best_output_a = output_a.clone()
best_attn = attn
best_output_i = output_i.clone()
#
#break
if loss1.data[0] < cur_best.data[0]:
print(cur_best.data[0],"\t", torch.norm(modifier.data))
cur_best = loss1.clone()
best_word = new_word_list
best_output_a = output_a.clone()
best_attn = attn
best_output_i = output_i.clone()
# FLAG = True
# else:
# FLAG = False
# print(cur_best.data[0],"\t", torch.norm(modifier.data))
if k == 199:
new_word_list = best_word
output_a = best_output_a
attn = best_attn
output_i = best_output_i
if cur_best.data[0] <= 0:
break
CFLAG = False
print("lr=",lr)
loss2 = torch.max(modifier)
#loss2 = torch.sum(modifier * modifier)
#print(loss2.data[0])
if GRAD_REG:
loss = const * loss1 + min_dist + loss2
else:
loss = const * loss1 + loss2
loss.backward(retain_graph=True)
#modifier.data -= lr * modifier.grad.data
if GROUP_LASSO:
gamma = lr
l2dist = torch.norm(modifier, 2, 2)
lidist,_ = torch.max(modifier,2)
#print(lidist)
for j in range(input_embedding.size()[0]):
if l2dist.data[j][0] > gamma * const:
modifier.data[j] = modifier.data[j] - gamma*const* modifier.data[j]/l2dist.data[j][0]
else:
modifier.data[j] = torch.zeros(1,500).cuda()
modifier.data -= lr * modifier.grad.data
modifier.grad.data.zero_()
if CFLAG:
break
return modifier, output_a, attn, new_word_list, output_i, CFLAG
def main():
dummy_parser = argparse.ArgumentParser(description='train.py')
opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
#print(opt)
# Load the model.
fields, model, model_opt = \
onmt.ModelConstructor.load_test_model(opt, dummy_opt.__dict__)
#print(model_opt)
n_src = len(fields['src'].vocab)
n_tgt = len(fields['tgt'].vocab)
# File to write sentences to.
out_file = codecs.open(opt.output, 'w', 'utf-8')
# Test data
data = onmt.io.build_dataset(fields, opt.data_type,
opt.src, opt.tgt,
src_dir=opt.src_dir,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
use_filter_pred=False)
test_data = onmt.io.OrderedIterator(
dataset=data, device=opt.gpu,
batch_size=1, train=False, sort=False,
shuffle=False)
# Translator
scorer = onmt.translate.GNMTGlobalScorer(opt.alpha, opt.beta)
translator = onmt.translate.Translator(model, fields,
beam_size=opt.beam_size,
n_best=opt.n_best,
global_scorer=scorer,
max_length=opt.max_sent_length,
copy_attn=model_opt.copy_attn,
cuda=opt.cuda,
beam_trace=opt.dump_beam != "")
builder = onmt.translate.TranslationBuilder(
data, translator.fields,
opt.n_best, opt.replace_unk, opt.tgt)
# Statistics
counter = count(1)
pred_score_total, pred_words_total = 0, 0
gold_score_total, gold_words_total = 0, 0
pdist = nn.PairwiseDistance(p=2)
if opt.tar_dir:
TARGETED = True
else:
TARGETED = False
GROUP_LASSO = opt.gl
GRAD_REG = opt.gr
NN = opt.nn
const = 1
if TARGETED:
targets_list = []
tar = onmt.io.build_dataset(fields, opt.data_type,
opt.src, opt.tar_dir,
src_dir=opt.tar_dir,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
use_filter_pred=False)
tar_data = onmt.io.OrderedIterator(
dataset=tar, device=opt.gpu,
batch_size=1, train=False, sort=False,
shuffle=False)
all_index = Variable(torch.LongTensor(range(n_src)).view(n_src,1,1).cuda())
all_word_embedding, _ = translator.getEmbedding(all_index, FLAG=False)
for batch in test_data:
batch_data = translator.translate_batch(batch, data)
predBatch = batch_data["predictions"]
translations = builder.from_batch(batch_data)
if TARGETED:
target_list = []
for target in tar_data:
target_inds = onmt.io.make_features(target, 'tgt')
target_list.append(target_inds.data.cpu().view(-1,1))
#print(target_list)
true_label = target_list[0]
#print(true_label)
else:
label_data = translator.translate_batch(batch, data)
pred = label_data["predictions"]
true_label=torch.LongTensor(pred[0][0]).view(-1,1)
label_onehot = torch.FloatTensor(true_label.size()[0], n_tgt)
label_onehot.zero_()
label_onehot.scatter_(1,true_label,1)
if TARGETED:
label_onehot = label_onehot[1:-1,:]
label_onehot = Variable(label_onehot, requires_grad = False).cuda()
#print(label_onehot)
#print(batch)
input_embedding, src= translator.getEmbedding(batch)
#print(src)
hidden_size = input_embedding.size()[2]
if GROUP_LASSO:
modifier_initial = torch.zeros(input_embedding.size()).cuda()
else:
modifier_initial = torch.zeros(input_embedding.size()).cuda()
modifier = Variable(modifier_initial, requires_grad = True)
#print(input_embedding)
new_embedding = input_embedding.clone()
modifier, output_a, attn, new_word, output_i, CFLAG = attack(all_word_embedding, label_onehot, translator, src, batch, new_embedding, input_embedding, modifier, const, GROUP_LASSO, TARGETED, GRAD_REG, NN)
words_list = builder.get_word(output_i, attn, batch)
print(words_list)
new_embedding = input_embedding.clone()
new_embedding = modifier + input_embedding
if NN:
changed_words=[]
for i in range(input_embedding.size()[0]):
dis = []
for dic_embedding_index in range(all_word_embedding.size()[0]):
#if dic_embedding_index == src.data[index][0][0]:
# continue
new_dist = pdist(new_embedding[i], all_word_embedding[dic_embedding_index])
dis.append(new_dist.data[0][0])
print(min(dis), np.argmin(dis))
changed_words.append(np.argmin(dis))
print(changed_words)
new_word = changed_words
#print(new_word)
newsrc = src.clone()
for i in range(input_embedding.size()[0]):
newsrc.data[i][0] = new_word[i]
print(builder.get_source(newsrc, batch))
new_pred = translator.translate_batch(batch,data, newsrc=newsrc, FLAG=False)
predBatch = builder.from_batch(new_pred)
for trans in predBatch:
n_best_preds = [" ".join(pred) for pred in trans.pred_sents[:opt.n_best]]
for trans in translations:
o_preds = [" ".join(pred) for pred in trans.pred_sents[:opt.n_best]]
print(n_best_preds)
out_file.write(''.join(builder.get_source(newsrc, batch)))
out_file.write('\t\t')
out_file.write(n_best_preds[0])
out_file.write('\t\t')
out_file.write(o_preds[0])
out_file.write('\n')
out_file.flush()
if __name__ == "__main__":
main()