-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
216 lines (192 loc) · 7.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import pickle
import random
import torch
import numpy as np
from tcomplex import TComplEx
from tqdm import tqdm
def loadTkbcModel(tkbc_model_file):
print('Loading tkbc model from', tkbc_model_file)
x = torch.load(tkbc_model_file,map_location=torch.device("cpu"))
num_ent = x['embeddings.0.weight'].shape[0]
num_rel = x['embeddings.1.weight'].shape[0]
num_ts = x['embeddings.2.weight'].shape[0]
print('Number ent,rel,ts from loaded model:', num_ent, num_rel, num_ts)
sizes = [num_ent, num_rel, num_ent, num_ts]
rank = x['embeddings.0.weight'].shape[1] // 2 # complex has 2*rank embedding size
tkbc_model = TComplEx(sizes, rank, no_time_emb=False)
tkbc_model.load_state_dict(x)
tkbc_model.cuda()
print('Loaded tkbc model')
return tkbc_model
def loadTkbcModel_complex(tkbc_model_file):
print('Loading complex tkbc model from', tkbc_model_file)
tcomplex_file = 'models/wikidata_big/kg_embeddings/tcomplex_17dec.ckpt' #TODO: hack
tcomplex_params = torch.load(tcomplex_file)
complex_params = torch.load(tkbc_model_file)
num_ent = tcomplex_params['embeddings.0.weight'].shape[0]
num_rel = tcomplex_params['embeddings.1.weight'].shape[0]
num_ts = tcomplex_params['embeddings.2.weight'].shape[0]
print('Number ent,rel,ts from loaded model:', num_ent, num_rel, num_ts)
sizes = [num_ent, num_rel, num_ent, num_ts]
rank = tcomplex_params['embeddings.0.weight'].shape[1] // 2 # complex has 2*rank embedding size
# now put complex params in tcomplex model
tcomplex_params['embeddings.0.weight'] = complex_params['embeddings.0.weight']
tcomplex_params['embeddings.1.weight'] = complex_params['embeddings.1.weight']
torch.nn.init.xavier_uniform_(tcomplex_params['embeddings.2.weight']) # randomize time embeddings
tkbc_model = TComplEx(sizes, rank, no_time_emb=False)
tkbc_model.load_state_dict(tcomplex_params)
tkbc_model.cuda()
print('Loaded complex tkbc model')
return tkbc_model
def dataIdsToLiterals(d, all_dicts):
new_datapoint = []
id2rel = all_dicts['id2rel']
id2ent = all_dicts['id2ent']
id2ts = all_dicts['id2ts']
wd_id_to_text = all_dicts['wd_id_to_text']
new_datapoint.append(wd_id_to_text[id2ent[d[0]]])
new_datapoint.append(wd_id_to_text[id2rel[d[1]]])
new_datapoint.append(wd_id_to_text[id2ent[d[2]]])
new_datapoint.append(id2ts[d[3]])
new_datapoint.append(id2ts[d[4]])
return new_datapoint
def getAllDicts(dataset_name):
# base_path = '/scratche/home/apoorv/tkbc/tkbc_env/lib/python3.7/site-packages/tkbc-0.0.0-py3.7.egg/tkbc/data/wikidata_small/'
base_path = 'data/{dataset_name}/kg/tkbc_processed_data/{dataset_name}/'.format(
dataset_name=dataset_name
)
dicts = {}
for f in ['ent_id', 'rel_id', 'ts_id']:
in_file = open(str(base_path + f), 'rb')
dicts[f] = pickle.load(in_file)
rel2id = dicts['rel_id']
ent2id = dicts['ent_id']
ts2id = dicts['ts_id']
file_ent = 'data/{dataset_name}/kg/wd_id2entity_text.txt'.format(
dataset_name=dataset_name
)
file_rel = 'data/{dataset_name}/kg/wd_id2relation_text.txt'.format(
dataset_name=dataset_name
)
def readDict(filename):
f = open(filename, 'r')
d = {}
for line in f:
line = line.strip().split('\t')
if len(line) == 1:
line.append('') # in case literal was blank or whitespace
d[line[0]] = line[1]
f.close()
return d
e = readDict(file_ent)
r = readDict(file_rel)
wd_id_to_text = dict(list(e.items()) + list(r.items()))
def getReverseDict(d):
return {value: key for key, value in d.items()}
id2rel = getReverseDict(rel2id)
id2ent = getReverseDict(ent2id)
id2ts = getReverseDict(ts2id)
all_dicts = {'rel2id': rel2id,
'id2rel': id2rel,
'ent2id': ent2id,
'id2ent': id2ent,
'ts2id': ts2id,
'id2ts': id2ts,
'wd_id_to_text': wd_id_to_text
}
return all_dicts
def checkQuestion(question, target_type):
question_type = question['type']
if target_type != question_type:
return False
return True
# def getDataPoint(question, all_dicts):
def predictTime(question, model, all_dicts, k=1):
entities = list(question['entities'])
times = question['times']
target_type = 'simple_time'
if checkQuestion(question, target_type) == False:
print('Not Entity question')
return set()
ent2id = all_dicts['ent2id']
rel2id = all_dicts['rel2id']
id2ts = all_dicts['id2ts']
annotation = question['annotation']
head = ent2id[annotation['head']]
tail = ent2id[annotation['tail']]
# relation = rel2id[list(question['relations'])[0]]
relation = list(question['relations'])[0]
if 'P' not in relation:
relation = 'P' + relation
relation = rel2id[relation] #+ model.embeddings[1].weight.shape[0]//2 #+ 90
data_point = [head, relation, tail, 1, 1]
data_batch = torch.from_numpy(np.array([data_point])).cuda()
time_scores = model.forward_over_time(data_batch)
val, ind = torch.topk(time_scores, k, dim=1)
topk_set = set()
for row in ind:
for x in row:
topk_set.add(id2ts[x.item()][0])
return topk_set
def predictTail(question, model, all_dicts, k=1):
entities = list(question['entities'])
times = list(question['times'])
target_type = 'simple_entity'
if checkQuestion(question, target_type) == False:
print('Not Entity question')
return set()
ent2id = all_dicts['ent2id']
rel2id = all_dicts['rel2id']
ts2id = all_dicts['ts2id']
id2ent = all_dicts['id2ent']
head = ent2id[entities[0]]
try:
time = ts2id[(times[0],0,0)]
except:
return set()
relation = list(question['relations'])[0]
if 'P' not in relation:
relation = 'P' + relation
relation = rel2id[relation] #+ model.embeddings[1].weight.shape[0]//2 #+ 90
data_point = [head, relation, 1, time, time]
data_batch = torch.from_numpy(np.array([data_point])).cuda()
predictions, factors, time = model.forward(data_batch)
val, ind = torch.topk(predictions, k, dim=1)
topk_set = set()
for row in ind:
for x in row:
topk_set.add(id2ent[x.item()])
return topk_set
def checkIfTkbcEmbeddingsTrained(tkbc_model, dataset_name, split='test'):
filename = 'data/{dataset_name}/questions/{split}.pickle'.format(
dataset_name=dataset_name,
split=split
)
questions = pickle.load(open(filename, 'rb'))
all_dicts = getAllDicts(dataset_name)
for question_type in ['simple_entity', 'simple_time']:
correct_count = 0
total_count = 0
k = 1 # hit at k
for i in tqdm(range(len(questions))):
this_question_type = questions[i]['type']
if question_type == this_question_type and question_type == 'simple_entity':
which_question_function = predictTail
elif question_type == this_question_type and question_type == 'simple_time':
which_question_function = predictTime
else:
continue
total_count += 1
id = i
predicted = which_question_function(questions[id], tkbc_model, all_dicts, k)
intersection_set = set(questions[id]['answers']).intersection(predicted)
if len(intersection_set) > 0:
correct_count += 1
print(question_type, correct_count, total_count, correct_count/total_count)
def print_info(args):
print('#######################')
print('Model: '+ args.model)
print('Supervision (if applicable): '+args.supervision)
print('TKG Embeddings: '+args.tkbc_model_file)
print('TKG for QA (if applicable): '+args.tkg_file)
print('#######################')