-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathqa_tempoqr.py
287 lines (215 loc) · 11.3 KB
/
qa_tempoqr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import math
import torch
from torch import nn
import numpy as np
from tcomplex import TComplEx
from transformers import DistilBertModel
from torch.nn import LayerNorm
import pdb
# training data: questions
# model:
# 1. tkbc model embeddings (may or may not be frozen)
# 2. question sentence embeddings (may or may not be frozen)
# 3. linear layer to project question embeddings (unfrozen)
# 4. transformer that takes these embeddings (unfrozen) (cats them along a dimension, also takes a mask)
# 5. average output embeddings of transformer or take last token embedding?
# 6. linear projection of this embedding to tkbc embedding dimension
# 7. score with all possible entities/times and sigmoid
# 8. BCE loss (multiple correct possible)
class QA_TempoQR(nn.Module):
def __init__(self, tkbc_model, args):
super().__init__()
self.model = args.model
self.supervision = args.supervision
self.extra_entities = args.extra_entities
self.fuse = args.fuse
self.tkbc_embedding_dim = tkbc_model.embeddings[0].weight.shape[1]
self.sentence_embedding_dim = 768 # hardwired from
self.pretrained_weights = 'distilbert-base-uncased'
self.lm_model = DistilBertModel.from_pretrained(self.pretrained_weights)
if args.lm_frozen == 1:
print('Freezing LM params')
for param in self.lm_model.parameters():
param.requires_grad = False
else:
print('Unfrozen LM params')
# transformer
self.transformer_dim = self.tkbc_embedding_dim # keeping same so no need to project embeddings
self.nhead = 8
self.num_layers = 6
self.transformer_dropout = 0.1
self.encoder_layer = nn.TransformerEncoderLayer(d_model=self.transformer_dim, nhead=self.nhead,
dropout=self.transformer_dropout)
encoder_norm = LayerNorm(self.transformer_dim)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=self.num_layers,
norm=encoder_norm)
self.project_sentence_to_transformer_dim = nn.Linear(self.sentence_embedding_dim, self.transformer_dim)
self.project_entity = nn.Linear(self.tkbc_embedding_dim, self.tkbc_embedding_dim)
#TKG embeddings
self.tkbc_model = tkbc_model
num_entities = tkbc_model.embeddings[0].weight.shape[0]
num_times = tkbc_model.embeddings[2].weight.shape[0]
ent_emb_matrix = tkbc_model.embeddings[0].weight.data
time_emb_matrix = tkbc_model.embeddings[2].weight.data
full_embed_matrix = torch.cat([ent_emb_matrix, time_emb_matrix], dim=0)
# +1 is for padding idx
self.entity_time_embedding = nn.Embedding(num_entities + num_times + 1,
self.tkbc_embedding_dim,
padding_idx=num_entities + num_times)
self.entity_time_embedding.weight.data[:-1, :].copy_(full_embed_matrix)
if args.frozen == 1:
print('Freezing entity/time embeddings')
self.entity_time_embedding.weight.requires_grad = False
for param in self.tkbc_model.parameters():
param.requires_grad = False
else:
print('Unfrozen entity/time embeddings')
# position embedding for transformer
self.max_seq_length = 100 # randomly defining max length of tokens for question
self.position_embedding = nn.Embedding(self.max_seq_length, self.tkbc_embedding_dim)
# print('Random starting embedding')
self.loss = nn.CrossEntropyLoss(reduction='mean')
self.layer_norm = nn.LayerNorm(self.transformer_dim)
self.linear = nn.Linear(768, self.tkbc_embedding_dim) # to project question embedding
self.linearT = nn.Linear(768, self.tkbc_embedding_dim) # to project question embedding
self.lin_cat = nn.Linear(3*self.transformer_dim, self.transformer_dim)
self.linear1 = nn.Linear(self.tkbc_embedding_dim, self.tkbc_embedding_dim)
self.linear2 = nn.Linear(self.tkbc_embedding_dim, self.tkbc_embedding_dim)
self.dropout = torch.nn.Dropout(0.3)
self.bn1 = torch.nn.BatchNorm1d(self.tkbc_embedding_dim)
self.bn2 = torch.nn.BatchNorm1d(self.tkbc_embedding_dim)
return
def invert_binary_tensor(self, tensor):
ones_tensor = torch.ones(tensor.shape, dtype=torch.float32).cuda()
inverted = ones_tensor - tensor
return inverted
def infer_time(self, head_embedding, tail_embedding, relation_embedding):
lhs = head_embedding
rhs = tail_embedding
rel = relation_embedding
time = self.tkbc_model.embeddings[2].weight # + self.tkbc_model.lin2(self.tkbc_model.time_embedding.weight)
# time = self.entity_time_embedding.weight
lhs = lhs[:, :self.tkbc_model.rank], lhs[:, self.tkbc_model.rank:]
rel = rel[:, :self.tkbc_model.rank], rel[:, self.tkbc_model.rank:]
rhs = rhs[:, :self.tkbc_model.rank], rhs[:, self.tkbc_model.rank:]
time = time[:, :self.tkbc_model.rank], time[:, self.tkbc_model.rank:]
return torch.cat([
(lhs[0] * rel[0] * rhs[0] - lhs[1] * rel[1] * rhs[0] -
lhs[1] * rel[0] * rhs[1] + lhs[0] * rel[1] * rhs[1]),
(lhs[1] * rel[0] * rhs[0] - lhs[0] * rel[1] * rhs[0] +
lhs[0] * rel[0] * rhs[1] - lhs[1] * rel[1] * rhs[1])], dim=-1
)
# scoring function from TComplEx
def score_time(self, head_embedding, tail_embedding, relation_embedding):
lhs = head_embedding
rhs = tail_embedding
rel = relation_embedding
time = self.tkbc_model.embeddings[2].weight
lhs = lhs[:, :self.tkbc_model.rank], lhs[:, self.tkbc_model.rank:]
rel = rel[:, :self.tkbc_model.rank], rel[:, self.tkbc_model.rank:]
rhs = rhs[:, :self.tkbc_model.rank], rhs[:, self.tkbc_model.rank:]
time = time[:, :self.tkbc_model.rank], time[:, self.tkbc_model.rank:]
return (
(lhs[0] * rel[0] * rhs[0] - lhs[1] * rel[1] * rhs[0] -
lhs[1] * rel[0] * rhs[1] + lhs[0] * rel[1] * rhs[1]) @ time[0].t() +
(lhs[1] * rel[0] * rhs[0] - lhs[0] * rel[1] * rhs[0] +
lhs[0] * rel[0] * rhs[1] - lhs[1] * rel[1] * rhs[1]) @ time[1].t()
)
def score_entity(self, head_embedding, tail_embedding, relation_embedding, time_embedding):
lhs = head_embedding[:, :self.tkbc_model.rank], head_embedding[:, self.tkbc_model.rank:]
rel = relation_embedding
time = time_embedding
rel = rel[:, :self.tkbc_model.rank], rel[:, self.tkbc_model.rank:]
time = time[:, :self.tkbc_model.rank], time[:, self.tkbc_model.rank:]
right = self.tkbc_model.embeddings[0].weight
# right = self.entity_time_embedding.weight
right = right[:, :self.tkbc_model.rank], right[:, self.tkbc_model.rank:]
rt = rel[0] * time[0], rel[1] * time[0], rel[0] * time[1], rel[1] * time[1]
full_rel = rt[0] - rt[3], rt[1] + rt[2]
return (
(lhs[0] * full_rel[0] - lhs[1] * full_rel[1]) @ right[0].t() +
(lhs[1] * full_rel[0] + lhs[0] * full_rel[1]) @ right[1].t()
)
def forward(self, a):
#Tokenized questions, where entities are masked from the sentence to have TKG embeddings
question_tokenized = a[0].cuda()
question_attention_mask = a[1].cuda()
entities_times_padded = a[2].cuda()
entity_mask_padded = a[3].cuda()
#Annotated entities/timestamps
heads = a[4].cuda()
tails = a[5].cuda()
times = a[6].cuda()
#t1 and t2 by Hard Supervision
t1 = a[7].cuda()
t2 = a[8].cuda()
#One extra entity for new before & after question type
tails2 = a[9].cuda()
#TKG embeddings
head_embedding = self.entity_time_embedding(heads)
tail_embedding = self.entity_time_embedding(tails)
tail_embedding2 = self.entity_time_embedding(tails2)
time_embedding = self.entity_time_embedding(times)
#Hard Supervision
t1_emb = self.tkbc_model.embeddings[2](t1)
t2_emb = self.tkbc_model.embeddings[2](t2)
#entity embeddings to replace in sentence
entity_time_embedding = self.entity_time_embedding(entities_times_padded)
#context-aware step
outputs = self.lm_model(question_tokenized, attention_mask=question_attention_mask)
last_hidden_states = outputs.last_hidden_state
if self.supervision == 'soft':
#infer time embeddings for t1 and t2 with Soft Supervision
lm_last_hidden_states = outputs[0]
states = lm_last_hidden_states.transpose(1,0)
cls_embedding = states[0]
cls_embedding = self.linearT(cls_embedding)
t1_emb = self.infer_time(head_embedding, tail_embedding, cls_embedding)
t2_emb = self.infer_time(tail_embedding, head_embedding, cls_embedding)
if self.extra_entities == True and not self.training: #this is for the created before & after questions - we expect one more entity
t3_emb = self.infer_time(tail_embedding2, head_embedding, cls_embedding)
t2_emb = t2_emb+t3_emb #for simplicity, can be omitted and treated as t3_emb
#entity-aware step
question_embedding = self.project_sentence_to_transformer_dim(last_hidden_states)
entity_mask = entity_mask_padded.unsqueeze(-1).expand(question_embedding.shape)
masked_question_embedding = question_embedding * entity_mask # set entity positions 0
entity_time_embedding_projected = self.project_entity(entity_time_embedding)
#time-aware step
if self.model == 'tempoqr':
time_pos_embeddings1 = t1_emb.unsqueeze(0).transpose(0,1)
time_pos_embeddings1 = time_pos_embeddings1.expand(entity_time_embedding_projected.shape)
time_pos_embeddings2 = t2_emb.unsqueeze(0).transpose(0,1)
time_pos_embeddings2 = time_pos_embeddings2.expand(entity_time_embedding_projected.shape)
if self.fuse == 'cat':
entity_time_embedding_projected = self.lin_cat(torch.cat((entity_time_embedding_projected, time_pos_embeddings1,time_pos_embeddings2), dim=-1))
else:
entity_time_embedding_projected = entity_time_embedding_projected + time_pos_embeddings1 + time_pos_embeddings2
# Transformer information fusion layer
masked_entity_time_embedding = entity_time_embedding_projected * self.invert_binary_tensor(entity_mask)
combined_embed = masked_question_embedding + masked_entity_time_embedding
# also need to add position embedding
sequence_length = combined_embed.shape[1]
v = np.arange(0, sequence_length, dtype=np.long)
indices_for_position_embedding = torch.from_numpy(v).cuda()
position_embedding = self.position_embedding(indices_for_position_embedding)
position_embedding = position_embedding.unsqueeze(0).expand(combined_embed.shape)
combined_embed = combined_embed + position_embedding
combined_embed = self.layer_norm(combined_embed)
combined_embed = torch.transpose(combined_embed, 0, 1)
mask2 = ~(question_attention_mask.bool()).cuda()
output = self.transformer_encoder(combined_embed, src_key_padding_mask=mask2)
# Answer Predictions
if self.model == 'cronkgqa': #no transformer, go back and get cls_embedding
relation_embedding = cls_embedding
else:
relation_embedding = output[0]# self.linear(output[0]) #cls token embedding
relation_embedding1 = self.dropout(self.bn1(self.linear1(relation_embedding)))
relation_embedding2 = self.dropout(self.bn1(self.linear2(relation_embedding)))
scores_time = self.score_time(head_embedding, tail_embedding, relation_embedding1)
if self.model == 'cronkgqa' or (self.model == 'entityqr' and self.supervision != 'none'): #supervision for cronkgqa and entityqr
time_embedding = (time_embedding + t1_emb + t2_emb)/3 #just take the mean
scores_entity1 = self.score_entity(head_embedding, tail_embedding, relation_embedding2, time_embedding)
scores_entity2 = self.score_entity(tail_embedding, head_embedding, relation_embedding2, time_embedding)
scores_entity = torch.maximum(scores_entity1, scores_entity2)
scores = torch.cat((scores_entity, scores_time), dim=1)
return scores