-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
224 lines (198 loc) · 8.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os
import hashlib
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from collections import OrderedDict
import utils
import model as custom_model
def train(lr, batch_size, epochs, dataset, architecture, exp_id=None, sequence=None,
model_dir=None, save_freq=None, num_gpu=torch.cuda.device_count(), verify=False, dec_lr=None,
half=False, resume=False):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if sequence is not None or model_dir is not None:
resume = False
try:
trainset = utils.load_dataset(dataset, True)
except:
trainset = utils.load_dataset(dataset, True, download=True)
if num_gpu > 1:
net = nn.DataParallel(architecture())
batch_size = batch_size * num_gpu
else:
net = architecture()
num_batch = trainset.__len__() / batch_size
net.to(device)
if dataset == 'MNIST':
optimizer = optim.SGD(net.parameters(), lr=lr)
scheduler = None
elif dataset == 'CIFAR10':
if dec_lr is None:
dec_lr = [100, 150]
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=1e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[round(i * num_batch) for i in dec_lr],
gamma=0.1)
elif dataset == 'CIFAR100':
if dec_lr is None:
dec_lr = [60, 120, 160]
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[round(i * num_batch) for i in dec_lr],
gamma=0.2)
else:
optimizer = optim.Adam(net.parameters(), lr=lr)
scheduler = None
criterion = torch.nn.CrossEntropyLoss().to(device)
if model_dir is not None:
# load a pre-trained model from model_dir if it is given
state = torch.load(model_dir)
new_state_dict = OrderedDict()
try:
# in case the checkpoint is from a parallelized model
for k, v in state['net'].items():
name = "module." + k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
except:
net.load_state_dict(state['net'])
optimizer.load_state_dict(state['optimizer'])
if scheduler is not None:
try:
scheduler.load_state_dict(state['scheduler'])
except:
scheduler = None
if half:
net.half().float()
if sequence is None:
# if a training sequence is not given, create a new one
train_size = trainset.__len__()
sequence = utils.create_sequences(batch_size, train_size, epochs)
ind = None
if save_freq is not None and save_freq > 0:
# save the sequence of data indices if save_freq is not none
save_dir = os.path.join("proof", f"{dataset}_{exp_id}")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
else:
if resume:
try:
ind = -1
# find the most recent checkpoint
while os.path.exists(os.path.join(save_dir, f"model_step_{ind + 1}")):
ind = ind + 1
if ind >= 0:
model_dir = os.path.join(save_dir, f"model_step_{ind}")
state = torch.load(model_dir)
new_state_dict = OrderedDict()
try:
for k, v in state['net'].items():
name = "module." + k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
except:
net.load_state_dict(state['net'])
optimizer.load_state_dict(state['optimizer'])
if scheduler is not None:
try:
scheduler.load_state_dict(state['scheduler'])
except:
scheduler = None
sequence = np.load(os.path.join(save_dir, "indices.npy"))
sequence = sequence[ind:]
print('resume training')
except:
print('resume failed')
pass
if ind == -1:
ind = None
np.save(os.path.join(save_dir, "indices.npy"), sequence)
num_step = sequence.shape[0]
sequence = np.reshape(sequence, -1)
subset = torch.utils.data.Subset(trainset, sequence)
trainloader = torch.utils.data.DataLoader(subset, batch_size=batch_size, num_workers=0, pin_memory=True)
net.train()
if save_freq is not None and save_freq > 0:
m = hashlib.sha256()
for d in subset.dataset.data:
m.update(d.__str__().encode('utf-8'))
f = open(os.path.join(save_dir, "hash.txt"), "x")
f.write(m.hexdigest())
f.close()
for i, data in enumerate(trainloader, 0):
if save_freq is not None and i % save_freq == 0 and save_freq > 0:
# save the checkpoints every save_freq iterations
state = {'net': net.state_dict(),
'optimizer': optimizer.state_dict()}
if scheduler is not None:
state['scheduler'] = scheduler.state_dict()
if ind is None:
torch.save(state, os.path.join(save_dir, f"model_step_{i}"))
else:
torch.save(state, os.path.join(save_dir, f"model_step_{i+ind}"))
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
if i > 0 and i % round(num_batch) == 0 and verify:
print(f'Epoch {i // round(num_batch)}')
validate(dataset, net, batch_size)
net.train()
if save_freq is not None and save_freq > 0:
# for a model with n training steps, n+1 checkpoints will be saved
state = {'net': net.state_dict(),
'optimizer': optimizer.state_dict()}
if scheduler is not None:
state['scheduler'] = scheduler.state_dict()
torch.save(state, os.path.join(save_dir, f"model_step_{num_step}"))
return net
def validate(dataset, model, batch_size=128):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
testset = utils.load_dataset(dataset, False)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2, pin_memory=True)
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data[0].to(device), data[1].to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total} %')
return correct / total
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=1)
parser.add_argument('--dataset', type=str, default="CIFAR10")
parser.add_argument('--model', type=str, default="resnet20",
help="models defined in model.py or any torchvision model.\n"
"Recommendation for CIFAR-10: resnet20/32/44/56/110/1202\n"
"Recommendation for CIFAR-100: resnet18/34/50/101/152"
)
parser.add_argument('--id', help='experiment id', type=str, default='test')
parser.add_argument('--save-freq', type=int, default=100, help='frequence of saving checkpoints')
parser.add_argument('--num-gpu', type=int, default=torch.cuda.device_count())
parser.add_argument('--milestone', nargs='+', type=int, default=[100, 150])
parser.add_argument('--verify', type=int, default=0)
arg = parser.parse_args()
print(f'trying to allocate {arg.num_gpu} gpus')
try:
architecture = eval(f"custom_model.{arg.model}")
except:
architecture = eval(f"torchvision.models.{arg.model}")
trained_model = train(arg.lr, arg.batch_size, arg.epochs, arg.dataset, architecture, exp_id=arg.id,
save_freq=arg.save_freq, num_gpu=arg.num_gpu, dec_lr=arg.milestone,
verify=arg.verify, resume=True)
validate(arg.dataset, trained_model)