-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathmain.py
128 lines (103 loc) · 4.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import ExponentialLR
from torchvision import datasets, transforms
from torch.autograd import Variable
import model_resnet
import model
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--loss', type=str, default='hinge')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints')
parser.add_argument('--model', type=str, default='resnet')
args = parser.parse_args()
loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../data/', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])),
batch_size=args.batch_size, shuffle=True, num_workers=1, pin_memory=True)
Z_dim = 128
#number of updates to discriminator for every update to generator
disc_iters = 5
# discriminator = torch.nn.DataParallel(Discriminator()).cuda() # TODO: try out multi-gpu training
if args.model == 'resnet':
discriminator = model_resnet.Discriminator().cuda()
generator = model_resnet.Generator(Z_dim).cuda()
else:
discriminator = model.Discriminator().cuda()
generator = model.Generator(Z_dim).cuda()
# because the spectral normalization module creates parameters that don't require gradients (u and v), we don't want to
# optimize these using sgd. We only let the optimizer operate on parameters that _do_ require gradients
# TODO: replace Parameters with buffers, which aren't returned from .parameters() method.
optim_disc = optim.Adam(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.lr, betas=(0.0,0.9))
optim_gen = optim.Adam(generator.parameters(), lr=args.lr, betas=(0.0,0.9))
# use an exponentially decaying learning rate
scheduler_d = optim.lr_scheduler.ExponentialLR(optim_disc, gamma=0.99)
scheduler_g = optim.lr_scheduler.ExponentialLR(optim_gen, gamma=0.99)
def train(epoch):
for batch_idx, (data, target) in enumerate(loader):
if data.size()[0] != args.batch_size:
continue
data, target = Variable(data.cuda()), Variable(target.cuda())
# update discriminator
for _ in range(disc_iters):
z = Variable(torch.randn(args.batch_size, Z_dim).cuda())
optim_disc.zero_grad()
optim_gen.zero_grad()
if args.loss == 'hinge':
disc_loss = nn.ReLU()(1.0 - discriminator(data)).mean() + nn.ReLU()(1.0 + discriminator(generator(z))).mean()
elif args.loss == 'wasserstein':
disc_loss = -discriminator(data).mean() + discriminator(generator(z)).mean()
else:
disc_loss = nn.BCEWithLogitsLoss()(discriminator(data), Variable(torch.ones(args.batch_size, 1).cuda())) + \
nn.BCEWithLogitsLoss()(discriminator(generator(z)), Variable(torch.zeros(args.batch_size, 1).cuda()))
disc_loss.backward()
optim_disc.step()
z = Variable(torch.randn(args.batch_size, Z_dim).cuda())
# update generator
optim_disc.zero_grad()
optim_gen.zero_grad()
if args.loss == 'hinge' or args.loss == 'wasserstein':
gen_loss = -discriminator(generator(z)).mean()
else:
gen_loss = nn.BCEWithLogitsLoss()(discriminator(generator(z)), Variable(torch.ones(args.batch_size, 1).cuda()))
gen_loss.backward()
optim_gen.step()
if batch_idx % 100 == 0:
print('disc loss', disc_loss.data[0], 'gen loss', gen_loss.data[0])
scheduler_d.step()
scheduler_g.step()
fixed_z = Variable(torch.randn(args.batch_size, Z_dim).cuda())
def evaluate(epoch):
samples = generator(fixed_z).cpu().data.numpy()[:64]
fig = plt.figure(figsize=(8, 8))
gs = gridspec.GridSpec(8, 8)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.transpose((1,2,0)) * 0.5 + 0.5)
if not os.path.exists('out/'):
os.makedirs('out/')
plt.savefig('out/{}.png'.format(str(epoch).zfill(3)), bbox_inches='tight')
plt.close(fig)
os.makedirs(args.checkpoint_dir, exist_ok=True)
for epoch in range(2000):
train(epoch)
evaluate(epoch)
torch.save(discriminator.state_dict(), os.path.join(args.checkpoint_dir, 'disc_{}'.format(epoch)))
torch.save(generator.state_dict(), os.path.join(args.checkpoint_dir, 'gen_{}'.format(epoch)))