-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation_metrics.py
56 lines (41 loc) · 1.92 KB
/
evaluation_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import keras.backend as K
def dice_coef(y_true, y_pred, smooth=1.0):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(K.abs(y_true * y_pred))
return (2. * intersection + smooth) / (K.sum(K.square(y_true)) + K.sum(K.square(y_pred)) + smooth)
def dice_NTC(y_true, y_pred, smooth=1.0):
y_true = K.flatten(y_true[:,:,:,0])
y_pred = K.flatten(y_pred[:,:,:,0])
intersection = K.sum(K.abs(y_true * y_pred))
return (2. * intersection + smooth) / (K.sum(K.square(y_true)) + K.sum(K.square(y_pred)) + smooth)
def dice_ED(y_true, y_pred, smooth=1.0):
y_true = K.flatten(y_true[:,:,:,1])
y_pred = K.flatten(y_pred[:,:,:,1])
intersection = K.sum(K.abs(y_true * y_pred))
return (2. * intersection + smooth) / (K.sum(K.square(y_true)) + K.sum(K.square(y_pred)) + smooth)
def dice_ET(y_true, y_pred, smooth=1.0):
y_true = K.flatten(y_true[:,:,:,2])
y_pred = K.flatten(y_pred[:,:,:,2])
intersection = K.sum(K.abs(y_true * y_pred))
return (2. * intersection + smooth) / (K.sum(K.square(y_true)) + K.sum(K.square(y_pred)) + smooth)
def Hausdorff_distance(y_true, y_pred):
dim =len(y_true.shape)
hd=[]
for k in range(3):
sym_hausdorff = max(directed_hausdorff(y_true[...,k],y_pred[...,k])[0], directed_hausdorff(y_pred[...,k],y_true[...,k])[0])
hd.append(sym_hausdorff)
hd = np.asarray(hd)
return np.mean(hd[1:])
def hausdorff_NTC(y_true, y_pred):
y_true = K.flatten(y_true[:,:,0])
y_pred = K.flatten(y_pred[:,:,0])
return Hausdorff_distance(y_true, y_pred)
def hausdorff_ED(y_true, y_pred):
y_true = K.flatten(y_true[:,:,1])
y_pred = K.flatten(y_pred[:,:,1])
return Hausdorff_distance(y_true, y_pred)
def hausdorff_ET(y_true, y_pred):
y_true = K.flatten(y_true[:,:,2])
y_pred = K.flatten(y_pred[:,:,2])
return Hausdorff_distance(y_true, y_pred)