-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfeature_expansion.py
171 lines (146 loc) · 7.04 KB
/
feature_expansion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn.functional as F
import networkx as nx
from torch_geometric.nn.conv import MessagePassing
from torch_scatter import scatter_add
from torch_geometric.utils import degree
from torch_geometric.utils import remove_self_loops, add_self_loops
class FeatureExpander(MessagePassing):
r"""Expand features.
Args:
degree (bool): whether to use degree feature.
onehot_maxdeg (int): whether to use one_hot degree feature with
with max degree capped. disableid with 0.
AK (int): whether to use a^kx feature. disabled with 0.
centrality (bool): whether to use centrality feature.
remove_edges (strings): whether to remove edges, partially or totally.
edge_noises_add (float): adding random edges (in ratio of current edges).
edge_noises_delete (float): remove random ratio of edges.
group_degree (int): group nodes to create super nodes, set 0 to disable.
"""
def __init__(self, degree=True, onehot_maxdeg=0, AK=1,
centrality=False, remove_edges="none",
edge_noises_add=0, edge_noises_delete=0, group_degree=0):
super(FeatureExpander, self).__init__('add', 'source_to_target')
self.degree = degree
self.onehot_maxdeg = onehot_maxdeg
self.AK = AK
self.centrality = centrality
self.remove_edges = remove_edges
self.edge_noises_add = edge_noises_add
self.edge_noises_delete = edge_noises_delete
self.group_degree = group_degree
assert remove_edges in ["none", "nonself", "all"], remove_edges
self.edge_norm_diag = 1e-8 # edge norm is used, and set A diag to it
def transform(self, data):
if data.x is None:
data.x = torch.ones([data.num_nodes, 1], dtype=torch.float)
# Adding noises to edges before computing anything else.
if self.edge_noises_delete > 0:
num_edges_new = data.num_edges - int(
data.num_edges * self.edge_noises_delete)
idxs = torch.randperm(data.num_edges)[:num_edges_new]
data.edge_index = data.edge_index[:, idxs]
if self.edge_noises_add > 0:
num_new_edges = int(data.num_edges * self.edge_noises_add)
idx = torch.LongTensor(num_new_edges * 2).random_(0, data.num_nodes)
new_edges = idx.reshape(2, -1)
data.edge_index = torch.cat([data.edge_index, new_edges], 1)
deg, deg_onehot = self.compute_degree(data.edge_index, data.num_nodes)
akx = self.compute_akx(data.num_nodes, data.x, data.edge_index)
cent = self.compute_centrality(data)
data.x = torch.cat([data.x, deg, deg_onehot, akx, cent], -1)
if self.remove_edges != "none":
if self.remove_edges == "all":
self_edge = None
else: # only keep self edge
self_edge = torch.tensor(range(data.num_nodes)).view((1, -1))
self_edge = torch.cat([self_edge, self_edge], 0)
data.edge_index = self_edge
# Reduce nodes by degree-based grouping
if self.group_degree > 0:
assert self.remove_edges == "all", "remove all edges"
x_base = data.x
deg_base = deg.view(-1)
super_nodes = []
for k in range(1, self.group_degree + 1):
eq_idx = deg_base == k
gt_idx = deg_base > k
x_to_group = x_base[eq_idx]
x_base = x_base[gt_idx]
deg_base = deg_base[gt_idx]
group_size = torch.zeros([1, 1]) + x_to_group.size(0)
if x_to_group.size(0) == 0:
super_nodes.append(
torch.cat([group_size, data.x[:1]*0], -1))
else:
super_nodes.append(
torch.cat([group_size,
x_to_group.mean(0, keepdim=True)], -1))
if x_base.size(0) == 0:
x_base = data.x[:1] * 0
data.x = x_base
data.xg = torch.cat(super_nodes, 0).view((1, -1))
return data
def compute_degree(self, edge_index, num_nodes):
row, col = edge_index
deg = degree(row, num_nodes)
deg = deg.view((-1, 1))
if self.onehot_maxdeg is not None and self.onehot_maxdeg > 0:
max_deg = torch.tensor(self.onehot_maxdeg, dtype=deg.dtype)
deg_capped = torch.min(deg, max_deg).type(torch.int64)
deg_onehot = F.one_hot(
deg_capped.view(-1), num_classes=self.onehot_maxdeg + 1)
deg_onehot = deg_onehot.type(deg.dtype)
else:
deg_onehot = self.empty_feature(num_nodes)
if not self.degree:
deg = self.empty_feature(num_nodes)
return deg, deg_onehot
def compute_centrality(self, data):
if not self.centrality:
return self.empty_feature(data.num_nodes)
G = nx.Graph(data.edge_index.numpy().T.tolist())
G.add_nodes_from(range(data.num_nodes)) # in case missing node ids
closeness = nx.algorithms.closeness_centrality(G)
betweenness = nx.algorithms.betweenness_centrality(G)
pagerank = nx.pagerank_numpy(G)
centrality_features = torch.tensor(
[[closeness[i], betweenness[i], pagerank[i]] for i in range(
data.num_nodes)])
return centrality_features
def compute_akx(self, num_nodes, x, edge_index, edge_weight=None):
if self.AK is None or self.AK <= 0:
return self.empty_feature(num_nodes)
edge_index, norm = self.norm(
edge_index, num_nodes, edge_weight, diag_val=self.edge_norm_diag)
xs = []
for k in range(1, self.AK + 1):
x = self.propagate(edge_index, x=x, norm=norm)
xs.append(x)
return torch.cat(xs, -1)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
@staticmethod
def norm(edge_index, num_nodes, edge_weight, diag_val=1e-8, dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
edge_weight = edge_weight.view(-1)
assert edge_weight.size(0) == edge_index.size(1)
edge_index, edge_weight = remove_self_loops(edge_index, edge_weight)
edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
# Add edge_weight for loop edges.
loop_weight = torch.full((num_nodes, ),
diag_val,
dtype=edge_weight.dtype,
device=edge_weight.device)
edge_weight = torch.cat([edge_weight, loop_weight], dim=0)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def empty_feature(self, num_nodes):
return torch.zeros([num_nodes, 0])