diff --git a/library/train_util.py b/library/train_util.py index ffe499317..0e3fb3811 100644 --- a/library/train_util.py +++ b/library/train_util.py @@ -3369,25 +3369,6 @@ def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth: default=None, help="Weight for standard deviation loss. Encourages the model to learn noise with a stddev like the true noise. May prevent 'deep fry'. 1.0 is a good starting place.", ) - parser.add_argument( - "--kurtosis_loss_weight", - type=float, - default=None, - help="Weight for kurtosis loss. Encourages the model to learn noise with a kurtosis like the true noise. Recommended if using std_loss_weight.", - ) - parser.add_argument( - "--skew_loss_weight", - type=float, - default=None, - help="Weight for skew loss. Encourages the model to learn noise with a skew like the true noise. Recommended if using std_loss_weight.", - ) - parser.add_argument( - "--latent_corruption", - type=float, - default=None, - help="latent corruption for training (default is None) / 学習時のlatent corruption(デフォルトはNone)", - ) - if support_dreambooth: # DreamBooth training diff --git a/train_network.py b/train_network.py index 8f1dedb33..f7f8f242d 100644 --- a/train_network.py +++ b/train_network.py @@ -913,14 +913,6 @@ def remove_model(old_ckpt_name): std_loss = F.mse_loss(pred_std, true_std, reduction="none") loss = loss + std_loss * args.std_loss_weight - if args.skew_loss_weight is not None: - skew_loss = F.mse_loss(pred_skews, true_skews, reduction="none") - loss = loss + skew_loss * args.skew_loss_weight - - if args.kurtosis_loss_weight is not None: - kurtosis_loss = F.mse_loss(pred_kurtoses, true_kurtoses, reduction="none") - loss = loss + kurtosis_loss * args.kurtosis_loss_weight - # print(kl_loss.dtype, pred_std.dtype, noise_pred.dtype, true_std.dtype, pred_skews.dtype, true_skews.dtype, pred_kurtoses.dtype, true_kurtoses.dtype) # step_logs["loss/kl_loss"] = kl_loss.mean().item() step_logs["metrics/noise_pred_std"] = pred_std.mean().item()