-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradar_plot.py
131 lines (117 loc) · 5.03 KB
/
radar_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from numpy.core.fromnumeric import size
from pandas.io.formats import style
import pyqtgraph as pg
from pyqtgraph.Qt import QtCore, QtGui
import numpy as np
import pandas as pd
from pyqtgraph.functions import colorStr
from scipy.spatial.transform import Rotation as R
from sklearn import cluster
from sklearn.cluster import DBSCAN
from re import search
class RadarPlot():
def __init__(self):
self.traces = dict()
self.app = QtGui.QApplication(sys.argv)
self.win = pg.GraphicsLayoutWidget(title="Hello There", show=True)
self.win.resize(600, 600)
self.win.setWindowTitle('ASAC Radar')
self.file_idx = 29
self.t = np.arange(0, 3.0, 0.01)
pg.setConfigOptions(antialias=True)
self.canvas = self.win.addPlot()
# DBSCAN variables
self.epsilon = 1
self.minimum_samples = 20
def trace(self, name, dataset_x, dataset_y):
if name in self.traces:
self.traces[name].setData(dataset_x, dataset_y)
else:
if name == "origin":
self.traces[name] = self.canvas.plot(
pen=None, symbol='o', symbolPen=None, symbolSize=20, symbolBrush=(207, 0, 15, 255))
elif name == "radar":
self.traces[name] = self.canvas.plot(
pen=None, symbol='o', symbolPen=None, symbolSize=5, symbolBrush=(30, 130, 76, 50))
elif name == "centroid":
self.traces[name] = self.canvas.plot(
pen=None, symbol='x', symbolPen=None, symbolSize=15, symbolBrush=(255, 255, 255, 255))
elif name == "corepoint":
self.traces[name] = self.canvas.plot(
pen=None, symbol='o', symbolPen=None, symbolSize=15, symbolBrush=(46, 204, 113, 100))
#else:
# self.traces[name] = self.canvas.plot(pen=pg.mkPen(
# color='y', width=0.5, style=QtCore.Qt.DashLine))
self.canvas.setXRange(-40, 40)
self.canvas.setYRange(0, 60)
def update(self):
file_name = "RadarData\Radar" + str(self.file_idx) + ".txt"
self.corepoints_centroids = None
self.read_headers(file_name)
self.read_data(file_name)
origin = np.array([[0, 0]])
self.DBSCAN()
#for index, row in self.corepoints_centroids.iterrows():
# name = "centroid_line_"+str(index)
# self.trace(name, [0, row[1]], [0, row[0]])
self.trace(
"radar", self.radar_data_rotated[:, 1], self.radar_data_rotated[:, 0])
self.trace(
"corepoint", self.corepoints[:, 1], self.corepoints[:, 0])
self.trace(
"centroid", self.corepoints_centroids['y'], self.corepoints_centroids['x'])
self.trace("origin", origin[:, 1], origin[:, 0])
self.file_idx += 1
if(self.file_idx > 500):
self.file_idx = 29
def file_slice(self, file_name):
file = open(file_name, "r")
file_len = 0
idx = 0
found = False
Content = file.read()
CoList = Content.split("\n")
for i in CoList:
if i:
file_len += 1
if search(']', i) and (not found):
found = True
idx = file_len
file.close()
return idx, file_len
def read_data(self, file_name):
idx, file_len = self.file_slice(file_name)
self.df = pd.read_table(file_name, names=[
'x', 'y', 'z'], skiprows=6, skipfooter=file_len-idx+2, delim_whitespace=True, engine='python', header=None)
self.df = self.df - self.radarPosition
self.radar_data = self.df.to_numpy()
self.radar_data_rotated = self.rotation_matrix.dot(self.radar_data.T).T
self.rotated_df = pd.DataFrame(
self.radar_data_rotated, columns=['x', 'y', 'z'])
def read_headers(self, file_name):
file1 = open(file_name, 'r')
for i, line in enumerate(file1):
if i == 3:
self.quaternion = np.array(line.split()[3:]).astype(float)
elif i == 2:
self.radarPosition = np.array(line.split()[3:]).astype(float)
self.inverse_quat = np.negative(self.quaternion)
self.r = R.from_quat(self.inverse_quat)
self.rotation_matrix = self.r.as_matrix()
file1.close()
def DBSCAN(self):
clustering = DBSCAN(eps=self.epsilon, min_samples=self.minimum_samples)
clustering.fit(self.radar_data_rotated)
self.corepoints = self.radar_data_rotated[clustering.core_sample_indices_, :]
self.rotated_df['label'] = pd.DataFrame(clustering.labels_)
self.corepoints_df = self.rotated_df[self.rotated_df['label'] != -1]
self.corepoints_centroids = self.corepoints_df.groupby(
['label']).mean()
if __name__ == '__main__':
import sys
p = RadarPlot()
timer = QtCore.QTimer()
timer.timeout.connect(p.update)
timer.start(20)
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()