-
Notifications
You must be signed in to change notification settings - Fork 22
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Sixel Graphics Implementation #352
Changes from 2 commits
ed43f81
d44fac5
16b7248
f672bee
9734d1f
41a4558
8705df7
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Large diffs are not rendered by default.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
package sixel | ||
|
||
import ( | ||
"image" | ||
"image/color" | ||
"io" | ||
"strconv" | ||
"strings" | ||
|
||
"github.com/bits-and-blooms/bitset" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is there anyway we can get rid of this dependency? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The only way I see it working is writing our own bitset implementation- is that something you want to pursue? |
||
) | ||
|
||
// Sixels are a protocol for writing images to the terminal by writing a large blob of ANSI-escaped data. | ||
// They function by encoding columns of 6 pixels into a single character (in much the same way base64 | ||
// encodes data 6 bits at a time). Sixel images are paletted, with a palette established at the beginning | ||
// of the image blob and pixels identifying palette entires by index while writing the pixel data. | ||
// | ||
// Sixels are written one 6-pixel-tall band at a time, one color at a time. For each band, a single | ||
// color's pixels are written, then a carriage return is written to bring the "cursor" back to the | ||
// beginning of a band where a new color is selected and pixels written. This continues until the entire | ||
// band has been drawn, at which time a line break is written to begin the next band. | ||
|
||
const ( | ||
sixelLineBreak byte = '-' | ||
sixelCarriageReturn byte = '$' | ||
sixelRepeat byte = '!' | ||
sixelUseColor byte = '#' | ||
CannibalVox marked this conversation as resolved.
Show resolved
Hide resolved
|
||
) | ||
|
||
type Options struct { | ||
} | ||
|
||
type Encoder struct { | ||
} | ||
|
||
// Encode will accept an Image and write sixel data to a Writer. The sixel data | ||
// will be everything after the 'q' that ends the DCS parameters and before the ST | ||
// that ends the sequence. That means it includes the pixel metrics and color | ||
// palette. | ||
func (e *Encoder) Encode(w io.Writer, img image.Image) error { | ||
if img == nil { | ||
return nil | ||
} | ||
|
||
imageBounds := img.Bounds() | ||
|
||
io.WriteString(w, "\"1;1;") //nolint:errcheck | ||
io.WriteString(w, strconv.Itoa(imageBounds.Dx())) //nolint:errcheck | ||
w.Write([]byte{';'}) //nolint:errcheck | ||
io.WriteString(w, strconv.Itoa(imageBounds.Dy())) //nolint:errcheck | ||
CannibalVox marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
palette := newSixelPalette(img, sixelMaxColors) | ||
|
||
for paletteIndex, color := range palette.PaletteColors { | ||
e.encodePaletteColor(w, paletteIndex, color) | ||
} | ||
|
||
scratch := newSixelBuilder(imageBounds.Dx(), imageBounds.Dy(), palette) | ||
|
||
for y := 0; y < imageBounds.Dy(); y++ { | ||
for x := 0; x < imageBounds.Dx(); x++ { | ||
scratch.SetColor(x, y, img.At(x, y)) | ||
} | ||
} | ||
|
||
pixels := scratch.GeneratePixels() | ||
io.WriteString(w, pixels) //nolint:errcheck | ||
|
||
return nil | ||
} | ||
|
||
func (e *Encoder) encodePaletteColor(w io.Writer, paletteIndex int, c sixelColor) { | ||
// Initializing palette entries | ||
// #<a>;<b>;<c>;<d>;<e> | ||
// a = palette index | ||
// b = color type, 2 is RGB | ||
// c = R | ||
// d = G | ||
// e = B | ||
|
||
w.Write([]byte{sixelUseColor}) //nolint:errcheck | ||
io.WriteString(w, strconv.Itoa(paletteIndex)) //nolint:errcheck | ||
io.WriteString(w, ";2;") | ||
io.WriteString(w, strconv.Itoa(int(c.Red))) //nolint:errcheck | ||
w.Write([]byte{';'}) //nolint:errcheck | ||
io.WriteString(w, strconv.Itoa(int(c.Green))) //nolint:errcheck | ||
w.Write([]byte{';'}) | ||
io.WriteString(w, strconv.Itoa(int(c.Blue))) //nolint:errcheck | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Let's define There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What is a basiccolor in this case, is it just getting a palette index with no color information? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Correct |
||
|
||
// sixelBuilder is a temporary structure used to create a SixelImage. It handles | ||
// breaking pixels out into bits, and then encoding them into a sixel data string. RLE | ||
// handling is included. | ||
// | ||
// Making use of a sixelBuilder is done in two phases. First, SetColor is used to write all | ||
// pixels to the internal BitSet data. Then, GeneratePixels is called to retrieve a string | ||
// representing the pixel data encoded in the sixel format. | ||
type sixelBuilder struct { | ||
SixelPalette sixelPalette | ||
|
||
imageHeight int | ||
imageWidth int | ||
|
||
pixelBands bitset.BitSet | ||
|
||
imageData strings.Builder | ||
repeatRune rune | ||
repeatCount int | ||
} | ||
|
||
// newSixelBuilder creates a sixelBuilder and prepares it for writing | ||
func newSixelBuilder(width, height int, palette sixelPalette) sixelBuilder { | ||
scratch := sixelBuilder{ | ||
imageWidth: width, | ||
imageHeight: height, | ||
SixelPalette: palette, | ||
} | ||
|
||
return scratch | ||
} | ||
|
||
// BandHeight returns the number of six-pixel bands this image consists of | ||
func (s *sixelBuilder) BandHeight() int { | ||
bandHeight := s.imageHeight / 6 | ||
if s.imageHeight%6 != 0 { | ||
bandHeight++ | ||
} | ||
|
||
return bandHeight | ||
} | ||
|
||
// SetColor will write a single pixel to sixelBuilder's internal bitset data to be used by | ||
// GeneratePixels | ||
func (s *sixelBuilder) SetColor(x int, y int, color color.Color) { | ||
bandY := y / 6 | ||
paletteIndex := s.SixelPalette.ColorIndex(sixelConvertColor(color)) | ||
|
||
bit := s.BandHeight()*s.imageWidth*6*paletteIndex + bandY*s.imageWidth*6 + (x * 6) + (y % 6) | ||
s.pixelBands.Set(uint(bit)) | ||
} | ||
|
||
// GeneratePixels is used to write the pixel data to the internal imageData string builder. | ||
// All pixels in the image must be written to the sixelBuilder using SetColor before this method is | ||
// called. This method returns a string that represents the pixel data. Sixel strings consist of five parts: | ||
// ISC <header> <palette> <pixels> ST | ||
// The header contains some arbitrary options indicating how the sixel image is to be drawn. | ||
// The palette maps palette indices to RGB colors | ||
// The pixels indicates which pixels are to be drawn with which palette colors. | ||
// | ||
// GeneratePixels only produces the <pixels> part of the string. The rest is written by | ||
// Style.RenderSixelImage. | ||
func (s *sixelBuilder) GeneratePixels() string { | ||
s.imageData = strings.Builder{} | ||
bandHeight := s.BandHeight() | ||
|
||
for bandY := 0; bandY < bandHeight; bandY++ { | ||
if bandY > 0 { | ||
s.writeControlRune(sixelLineBreak) | ||
} | ||
|
||
hasWrittenAColor := false | ||
|
||
for paletteIndex := 0; paletteIndex < len(s.SixelPalette.PaletteColors); paletteIndex++ { | ||
if s.SixelPalette.PaletteColors[paletteIndex].Alpha < 1 { | ||
// Don't draw anything for purely transparent pixels | ||
continue | ||
} | ||
|
||
firstColorBit := uint(s.BandHeight()*s.imageWidth*6*paletteIndex + bandY*s.imageWidth*6) | ||
nextColorBit := firstColorBit + uint(s.imageWidth*6) | ||
|
||
firstSetBitInBand, anySet := s.pixelBands.NextSet(firstColorBit) | ||
if !anySet || firstSetBitInBand >= nextColorBit { | ||
// Color not appearing in this row | ||
continue | ||
} | ||
|
||
if hasWrittenAColor { | ||
s.writeControlRune(sixelCarriageReturn) | ||
} | ||
hasWrittenAColor = true | ||
|
||
s.writeControlRune(sixelUseColor) | ||
s.imageData.WriteString(strconv.Itoa(paletteIndex)) | ||
for x := 0; x < s.imageWidth; x += 4 { | ||
bit := firstColorBit + uint(x*6) | ||
word := s.pixelBands.GetWord64AtBit(bit) | ||
|
||
pixel1 := rune((word & 63) + '?') | ||
pixel2 := rune(((word >> 6) & 63) + '?') | ||
pixel3 := rune(((word >> 12) & 63) + '?') | ||
pixel4 := rune(((word >> 18) & 63) + '?') | ||
|
||
s.writeImageRune(pixel1) | ||
|
||
if x+1 >= s.imageWidth { | ||
continue | ||
} | ||
s.writeImageRune(pixel2) | ||
|
||
if x+2 >= s.imageWidth { | ||
continue | ||
} | ||
s.writeImageRune(pixel3) | ||
|
||
if x+3 >= s.imageWidth { | ||
continue | ||
} | ||
s.writeImageRune(pixel4) | ||
} | ||
} | ||
} | ||
|
||
s.writeControlRune('-') | ||
return s.imageData.String() | ||
} | ||
|
||
// writeImageRune will write a single line of six pixels to pixel data. The data | ||
// doesn't get written to the imageData, it gets buffered for the purposes of RLE | ||
func (s *sixelBuilder) writeImageRune(r rune) { | ||
if r == s.repeatRune { | ||
s.repeatCount++ | ||
return | ||
} | ||
|
||
s.flushRepeats() | ||
s.repeatRune = r | ||
s.repeatCount = 1 | ||
} | ||
|
||
// writeControlRune will write a special rune such as a new line or carriage return | ||
// rune. It will call flushRepeats first, if necessary. | ||
func (s *sixelBuilder) writeControlRune(r byte) { | ||
if s.repeatCount > 0 { | ||
s.flushRepeats() | ||
s.repeatCount = 0 | ||
s.repeatRune = 0 | ||
} | ||
|
||
s.imageData.WriteByte(r) | ||
} | ||
|
||
// flushRepeats is used to actually write the current repeatRune to the imageData when | ||
// it is about to change. This buffering is used to manage RLE in the sixelBuilder | ||
func (s *sixelBuilder) flushRepeats() { | ||
if s.repeatCount == 0 { | ||
return | ||
} | ||
|
||
// Only write using the RLE form if it's actually providing space savings | ||
if s.repeatCount > 3 { | ||
countStr := strconv.Itoa(s.repeatCount) | ||
s.imageData.WriteByte(sixelRepeat) | ||
s.imageData.WriteString(countStr) | ||
s.imageData.WriteRune(s.repeatRune) | ||
return | ||
} | ||
|
||
for i := 0; i < s.repeatCount; i++ { | ||
s.imageData.WriteRune(s.repeatRune) | ||
} | ||
} | ||
CannibalVox marked this conversation as resolved.
Show resolved
Hide resolved
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just FYI, this p3 parameter was only used by Sixel printers. It never applied to Sixel terminals because their screen pixels were obviously in a fixed position, so there was no way to change the horizontal spacing.