diff --git a/ansi/sixel/palette.go b/ansi/sixel/palette.go
index cf9cf1b1..d58f438b 100644
--- a/ansi/sixel/palette.go
+++ b/ansi/sixel/palette.go
@@ -5,7 +5,6 @@ import (
"image"
"image/color"
"math"
- "sort"
)
// sixelPalette is a palette of up to 256 colors that lists the colors that will be used by
@@ -185,18 +184,32 @@ func (p *sixelPalette) quantize(uniqueColors []sixelColor, pixelCounts map[sixel
// Sort the colors in the bucket's range along the cube's longest color axis
// TODO: Use slices.SortFunc in the future
- sort.SliceStable(uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length],
- func(i, j int) bool {
- slice := uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length]
+ // sort.SliceStable(uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length],
+ // func(i, j int) bool {
+ // slice := uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length]
+ // switch cubeToSplit.sliceChannel {
+ // case quantizationRed:
+ // return slice[i].Red < slice[j].Red
+ // case quantizationGreen:
+ // return slice[i].Green < slice[j].Green
+ // case quantizationBlue:
+ // return slice[i].Blue < slice[j].Blue
+ // default:
+ // return slice[i].Alpha < slice[j].Alpha
+ // }
+ // })
+
+ sortFunc(uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length],
+ func(left sixelColor, right sixelColor) int {
switch cubeToSplit.sliceChannel {
case quantizationRed:
- return slice[i].Red < slice[j].Red
+ return compare(left.Red, right.Red)
case quantizationGreen:
- return slice[i].Green < slice[j].Green
+ return compare(left.Green, right.Green)
case quantizationBlue:
- return slice[i].Blue < slice[j].Blue
+ return compare(left.Blue, right.Blue)
default:
- return slice[i].Alpha < slice[j].Alpha
+ return compare(left.Alpha, right.Alpha)
}
})
diff --git a/ansi/sixel/palette_sort.go b/ansi/sixel/palette_sort.go
new file mode 100644
index 00000000..902bdcd9
--- /dev/null
+++ b/ansi/sixel/palette_sort.go
@@ -0,0 +1,550 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package sixel
+
+import (
+ "math/bits"
+)
+
+const (
+ unknownHint sortedHint = iota
+ increasingHint
+ decreasingHint
+)
+
+type ordered interface {
+ ~int | ~int8 | ~int16 | ~int32 | ~int64 |
+ ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
+ ~float32 | ~float64 |
+ ~string
+}
+
+// Compare returns
+//
+// -1 if x is less than y,
+// 0 if x equals y,
+// +1 if x is greater than y.
+//
+// For floating-point types, a NaN is considered less than any non-NaN,
+// a NaN is considered equal to a NaN, and -0.0 is equal to 0.0.
+func compare[T ordered](x, y T) int {
+ xNaN := isNaN(x)
+ yNaN := isNaN(y)
+ if xNaN {
+ if yNaN {
+ return 0
+ }
+ return -1
+ }
+ if yNaN {
+ return +1
+ }
+ if x < y {
+ return -1
+ }
+ if x > y {
+ return +1
+ }
+ return 0
+}
+
+// isNaN reports whether x is a NaN without requiring the math package.
+// This will always return false if T is not floating-point.
+func isNaN[T ordered](x T) bool {
+ return x != x
+}
+
+func sortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
+ n := len(x)
+ pdqsortCmpFunc(x, 0, n, bits.Len(uint(n)), cmp)
+}
+
+type sortedHint int // hint for pdqsort when choosing the pivot
+
+// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
+type xorshift uint64
+
+func (r *xorshift) Next() uint64 {
+ *r ^= *r << 13
+ *r ^= *r >> 7
+ *r ^= *r << 17
+ return uint64(*r)
+}
+
+func nextPowerOfTwo(length int) uint {
+ return 1 << bits.Len(uint(length))
+}
+
+// insertionSortCmpFunc sorts data[a:b] using insertion sort.
+func insertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
+ for i := a + 1; i < b; i++ {
+ for j := i; j > a && (cmp(data[j], data[j-1]) < 0); j-- {
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+}
+
+// siftDownCmpFunc implements the heap property on data[lo:hi].
+// first is an offset into the array where the root of the heap lies.
+func siftDownCmpFunc[E any](data []E, lo, hi, first int, cmp func(a, b E) int) {
+ root := lo
+ for {
+ child := 2*root + 1
+ if child >= hi {
+ break
+ }
+ if child+1 < hi && (cmp(data[first+child], data[first+child+1]) < 0) {
+ child++
+ }
+ if !(cmp(data[first+root], data[first+child]) < 0) {
+ return
+ }
+ data[first+root], data[first+child] = data[first+child], data[first+root]
+ root = child
+ }
+}
+
+func heapSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
+ first := a
+ lo := 0
+ hi := b - a
+
+ // Build heap with greatest element at top.
+ for i := (hi - 1) / 2; i >= 0; i-- {
+ siftDownCmpFunc(data, i, hi, first, cmp)
+ }
+
+ // Pop elements, largest first, into end of data.
+ for i := hi - 1; i >= 0; i-- {
+ data[first], data[first+i] = data[first+i], data[first]
+ siftDownCmpFunc(data, lo, i, first, cmp)
+ }
+}
+
+// pdqsortCmpFunc sorts data[a:b].
+// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
+// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
+// C++ implementation: https://github.com/orlp/pdqsort
+// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
+// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
+func pdqsortCmpFunc[E any](data []E, a, b, limit int, cmp func(a, b E) int) {
+ const maxInsertion = 12
+
+ var (
+ wasBalanced = true // whether the last partitioning was reasonably balanced
+ wasPartitioned = true // whether the slice was already partitioned
+ )
+
+ for {
+ length := b - a
+
+ if length <= maxInsertion {
+ insertionSortCmpFunc(data, a, b, cmp)
+ return
+ }
+
+ // Fall back to heapsort if too many bad choices were made.
+ if limit == 0 {
+ heapSortCmpFunc(data, a, b, cmp)
+ return
+ }
+
+ // If the last partitioning was imbalanced, we need to breaking patterns.
+ if !wasBalanced {
+ breakPatternsCmpFunc(data, a, b, cmp)
+ limit--
+ }
+
+ pivot, hint := choosePivotCmpFunc(data, a, b, cmp)
+ if hint == decreasingHint {
+ reverseRangeCmpFunc(data, a, b, cmp)
+ // The chosen pivot was pivot-a elements after the start of the array.
+ // After reversing it is pivot-a elements before the end of the array.
+ // The idea came from Rust's implementation.
+ pivot = (b - 1) - (pivot - a)
+ hint = increasingHint
+ }
+
+ // The slice is likely already sorted.
+ if wasBalanced && wasPartitioned && hint == increasingHint {
+ if partialInsertionSortCmpFunc(data, a, b, cmp) {
+ return
+ }
+ }
+
+ // Probably the slice contains many duplicate elements, partition the slice into
+ // elements equal to and elements greater than the pivot.
+ if a > 0 && !(cmp(data[a-1], data[pivot]) < 0) {
+ mid := partitionEqualCmpFunc(data, a, b, pivot, cmp)
+ a = mid
+ continue
+ }
+
+ mid, alreadyPartitioned := partitionCmpFunc(data, a, b, pivot, cmp)
+ wasPartitioned = alreadyPartitioned
+
+ leftLen, rightLen := mid-a, b-mid
+ balanceThreshold := length / 8
+ if leftLen < rightLen {
+ wasBalanced = leftLen >= balanceThreshold
+ pdqsortCmpFunc(data, a, mid, limit, cmp)
+ a = mid + 1
+ } else {
+ wasBalanced = rightLen >= balanceThreshold
+ pdqsortCmpFunc(data, mid+1, b, limit, cmp)
+ b = mid
+ }
+ }
+}
+
+// partitionCmpFunc does one quicksort partition.
+// Let p = data[pivot]
+// Moves elements in data[a:b] around, so that data[i]
=p for inewpivot.
+// On return, data[newpivot] = p
+func partitionCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int, alreadyPartitioned bool) {
+ data[a], data[pivot] = data[pivot], data[a]
+ i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
+
+ for i <= j && (cmp(data[i], data[a]) < 0) {
+ i++
+ }
+ for i <= j && !(cmp(data[j], data[a]) < 0) {
+ j--
+ }
+ if i > j {
+ data[j], data[a] = data[a], data[j]
+ return j, true
+ }
+ data[i], data[j] = data[j], data[i]
+ i++
+ j--
+
+ for {
+ for i <= j && (cmp(data[i], data[a]) < 0) {
+ i++
+ }
+ for i <= j && !(cmp(data[j], data[a]) < 0) {
+ j--
+ }
+ if i > j {
+ break
+ }
+ data[i], data[j] = data[j], data[i]
+ i++
+ j--
+ }
+ data[j], data[a] = data[a], data[j]
+ return j, false
+}
+
+// partitionEqualCmpFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
+// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
+func partitionEqualCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int) {
+ data[a], data[pivot] = data[pivot], data[a]
+ i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
+
+ for {
+ for i <= j && !(cmp(data[a], data[i]) < 0) {
+ i++
+ }
+ for i <= j && (cmp(data[a], data[j]) < 0) {
+ j--
+ }
+ if i > j {
+ break
+ }
+ data[i], data[j] = data[j], data[i]
+ i++
+ j--
+ }
+ return i
+}
+
+// partialInsertionSortCmpFunc partially sorts a slice, returns true if the slice is sorted at the end.
+func partialInsertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) bool {
+ const (
+ maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
+ shortestShifting = 50 // don't shift any elements on short arrays
+ )
+ i := a + 1
+ for j := 0; j < maxSteps; j++ {
+ for i < b && !(cmp(data[i], data[i-1]) < 0) {
+ i++
+ }
+
+ if i == b {
+ return true
+ }
+
+ if b-a < shortestShifting {
+ return false
+ }
+
+ data[i], data[i-1] = data[i-1], data[i]
+
+ // Shift the smaller one to the left.
+ if i-a >= 2 {
+ for j := i - 1; j >= 1; j-- {
+ if !(cmp(data[j], data[j-1]) < 0) {
+ break
+ }
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+ // Shift the greater one to the right.
+ if b-i >= 2 {
+ for j := i + 1; j < b; j++ {
+ if !(cmp(data[j], data[j-1]) < 0) {
+ break
+ }
+ data[j], data[j-1] = data[j-1], data[j]
+ }
+ }
+ }
+ return false
+}
+
+// breakPatternsCmpFunc scatters some elements around in an attempt to break some patterns
+// that might cause imbalanced partitions in quicksort.
+func breakPatternsCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
+ length := b - a
+ if length >= 8 {
+ random := xorshift(length)
+ modulus := nextPowerOfTwo(length)
+
+ for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
+ other := int(uint(random.Next()) & (modulus - 1))
+ if other >= length {
+ other -= length
+ }
+ data[idx], data[a+other] = data[a+other], data[idx]
+ }
+ }
+}
+
+// choosePivotCmpFunc chooses a pivot in data[a:b].
+//
+// [0,8): chooses a static pivot.
+// [8,shortestNinther): uses the simple median-of-three method.
+// [shortestNinther,∞): uses the Tukey ninther method.
+func choosePivotCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) (pivot int, hint sortedHint) {
+ const (
+ shortestNinther = 50
+ maxSwaps = 4 * 3
+ )
+
+ l := b - a
+
+ var (
+ swaps int
+ i = a + l/4*1
+ j = a + l/4*2
+ k = a + l/4*3
+ )
+
+ if l >= 8 {
+ if l >= shortestNinther {
+ // Tukey ninther method, the idea came from Rust's implementation.
+ i = medianAdjacentCmpFunc(data, i, &swaps, cmp)
+ j = medianAdjacentCmpFunc(data, j, &swaps, cmp)
+ k = medianAdjacentCmpFunc(data, k, &swaps, cmp)
+ }
+ // Find the median among i, j, k and stores it into j.
+ j = medianCmpFunc(data, i, j, k, &swaps, cmp)
+ }
+
+ switch swaps {
+ case 0:
+ return j, increasingHint
+ case maxSwaps:
+ return j, decreasingHint
+ default:
+ return j, unknownHint
+ }
+}
+
+// order2CmpFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
+func order2CmpFunc[E any](data []E, a, b int, swaps *int, cmp func(a, b E) int) (int, int) {
+ if cmp(data[b], data[a]) < 0 {
+ *swaps++
+ return b, a
+ }
+ return a, b
+}
+
+// medianCmpFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
+func medianCmpFunc[E any](data []E, a, b, c int, swaps *int, cmp func(a, b E) int) int {
+ a, b = order2CmpFunc(data, a, b, swaps, cmp)
+ b, c = order2CmpFunc(data, b, c, swaps, cmp)
+ a, b = order2CmpFunc(data, a, b, swaps, cmp)
+ return b
+}
+
+// medianAdjacentCmpFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
+func medianAdjacentCmpFunc[E any](data []E, a int, swaps *int, cmp func(a, b E) int) int {
+ return medianCmpFunc(data, a-1, a, a+1, swaps, cmp)
+}
+
+func reverseRangeCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) {
+ i := a
+ j := b - 1
+ for i < j {
+ data[i], data[j] = data[j], data[i]
+ i++
+ j--
+ }
+}
+
+func swapRangeCmpFunc[E any](data []E, a, b, n int, cmp func(a, b E) int) {
+ for i := 0; i < n; i++ {
+ data[a+i], data[b+i] = data[b+i], data[a+i]
+ }
+}
+
+func stableCmpFunc[E any](data []E, n int, cmp func(a, b E) int) {
+ blockSize := 20 // must be > 0
+ a, b := 0, blockSize
+ for b <= n {
+ insertionSortCmpFunc(data, a, b, cmp)
+ a = b
+ b += blockSize
+ }
+ insertionSortCmpFunc(data, a, n, cmp)
+
+ for blockSize < n {
+ a, b = 0, 2*blockSize
+ for b <= n {
+ symMergeCmpFunc(data, a, a+blockSize, b, cmp)
+ a = b
+ b += 2 * blockSize
+ }
+ if m := a + blockSize; m < n {
+ symMergeCmpFunc(data, a, m, n, cmp)
+ }
+ blockSize *= 2
+ }
+}
+
+// symMergeCmpFunc merges the two sorted subsequences data[a:m] and data[m:b] using
+// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
+// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
+// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
+// Computer Science, pages 714-723. Springer, 2004.
+//
+// Let M = m-a and N = b-n. Wolog M < N.
+// The recursion depth is bound by ceil(log(N+M)).
+// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
+// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
+//
+// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
+// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
+// in the paper carries through for Swap operations, especially as the block
+// swapping rotate uses only O(M+N) Swaps.
+//
+// symMerge assumes non-degenerate arguments: a < m && m < b.
+// Having the caller check this condition eliminates many leaf recursion calls,
+// which improves performance.
+func symMergeCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) {
+ // Avoid unnecessary recursions of symMerge
+ // by direct insertion of data[a] into data[m:b]
+ // if data[a:m] only contains one element.
+ if m-a == 1 {
+ // Use binary search to find the lowest index i
+ // such that data[i] >= data[a] for m <= i < b.
+ // Exit the search loop with i == b in case no such index exists.
+ i := m
+ j := b
+ for i < j {
+ h := int(uint(i+j) >> 1)
+ if cmp(data[h], data[a]) < 0 {
+ i = h + 1
+ } else {
+ j = h
+ }
+ }
+ // Swap values until data[a] reaches the position before i.
+ for k := a; k < i-1; k++ {
+ data[k], data[k+1] = data[k+1], data[k]
+ }
+ return
+ }
+
+ // Avoid unnecessary recursions of symMerge
+ // by direct insertion of data[m] into data[a:m]
+ // if data[m:b] only contains one element.
+ if b-m == 1 {
+ // Use binary search to find the lowest index i
+ // such that data[i] > data[m] for a <= i < m.
+ // Exit the search loop with i == m in case no such index exists.
+ i := a
+ j := m
+ for i < j {
+ h := int(uint(i+j) >> 1)
+ if !(cmp(data[m], data[h]) < 0) {
+ i = h + 1
+ } else {
+ j = h
+ }
+ }
+ // Swap values until data[m] reaches the position i.
+ for k := m; k > i; k-- {
+ data[k], data[k-1] = data[k-1], data[k]
+ }
+ return
+ }
+
+ mid := int(uint(a+b) >> 1)
+ n := mid + m
+ var start, r int
+ if m > mid {
+ start = n - b
+ r = mid
+ } else {
+ start = a
+ r = m
+ }
+ p := n - 1
+
+ for start < r {
+ c := int(uint(start+r) >> 1)
+ if !(cmp(data[p-c], data[c]) < 0) {
+ start = c + 1
+ } else {
+ r = c
+ }
+ }
+
+ end := n - start
+ if start < m && m < end {
+ rotateCmpFunc(data, start, m, end, cmp)
+ }
+ if a < start && start < mid {
+ symMergeCmpFunc(data, a, start, mid, cmp)
+ }
+ if mid < end && end < b {
+ symMergeCmpFunc(data, mid, end, b, cmp)
+ }
+}
+
+// rotateCmpFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
+// Data of the form 'x u v y' is changed to 'x v u y'.
+// rotate performs at most b-a many calls to data.Swap,
+// and it assumes non-degenerate arguments: a < m && m < b.
+func rotateCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) {
+ i := m - a
+ j := b - m
+
+ for i != j {
+ if i > j {
+ swapRangeCmpFunc(data, m-i, m, j, cmp)
+ i -= j
+ } else {
+ swapRangeCmpFunc(data, m-i, m+j-i, i, cmp)
+ j -= i
+ }
+ }
+ // i == j
+ swapRangeCmpFunc(data, m-i, m, i, cmp)
+}