diff --git a/ansi/sixel/palette.go b/ansi/sixel/palette.go index cf9cf1b1..d58f438b 100644 --- a/ansi/sixel/palette.go +++ b/ansi/sixel/palette.go @@ -5,7 +5,6 @@ import ( "image" "image/color" "math" - "sort" ) // sixelPalette is a palette of up to 256 colors that lists the colors that will be used by @@ -185,18 +184,32 @@ func (p *sixelPalette) quantize(uniqueColors []sixelColor, pixelCounts map[sixel // Sort the colors in the bucket's range along the cube's longest color axis // TODO: Use slices.SortFunc in the future - sort.SliceStable(uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length], - func(i, j int) bool { - slice := uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length] + // sort.SliceStable(uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length], + // func(i, j int) bool { + // slice := uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length] + // switch cubeToSplit.sliceChannel { + // case quantizationRed: + // return slice[i].Red < slice[j].Red + // case quantizationGreen: + // return slice[i].Green < slice[j].Green + // case quantizationBlue: + // return slice[i].Blue < slice[j].Blue + // default: + // return slice[i].Alpha < slice[j].Alpha + // } + // }) + + sortFunc(uniqueColors[cubeToSplit.startIndex:cubeToSplit.startIndex+cubeToSplit.length], + func(left sixelColor, right sixelColor) int { switch cubeToSplit.sliceChannel { case quantizationRed: - return slice[i].Red < slice[j].Red + return compare(left.Red, right.Red) case quantizationGreen: - return slice[i].Green < slice[j].Green + return compare(left.Green, right.Green) case quantizationBlue: - return slice[i].Blue < slice[j].Blue + return compare(left.Blue, right.Blue) default: - return slice[i].Alpha < slice[j].Alpha + return compare(left.Alpha, right.Alpha) } }) diff --git a/ansi/sixel/palette_sort.go b/ansi/sixel/palette_sort.go new file mode 100644 index 00000000..902bdcd9 --- /dev/null +++ b/ansi/sixel/palette_sort.go @@ -0,0 +1,550 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package sixel + +import ( + "math/bits" +) + +const ( + unknownHint sortedHint = iota + increasingHint + decreasingHint +) + +type ordered interface { + ~int | ~int8 | ~int16 | ~int32 | ~int64 | + ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | + ~float32 | ~float64 | + ~string +} + +// Compare returns +// +// -1 if x is less than y, +// 0 if x equals y, +// +1 if x is greater than y. +// +// For floating-point types, a NaN is considered less than any non-NaN, +// a NaN is considered equal to a NaN, and -0.0 is equal to 0.0. +func compare[T ordered](x, y T) int { + xNaN := isNaN(x) + yNaN := isNaN(y) + if xNaN { + if yNaN { + return 0 + } + return -1 + } + if yNaN { + return +1 + } + if x < y { + return -1 + } + if x > y { + return +1 + } + return 0 +} + +// isNaN reports whether x is a NaN without requiring the math package. +// This will always return false if T is not floating-point. +func isNaN[T ordered](x T) bool { + return x != x +} + +func sortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) { + n := len(x) + pdqsortCmpFunc(x, 0, n, bits.Len(uint(n)), cmp) +} + +type sortedHint int // hint for pdqsort when choosing the pivot + +// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf +type xorshift uint64 + +func (r *xorshift) Next() uint64 { + *r ^= *r << 13 + *r ^= *r >> 7 + *r ^= *r << 17 + return uint64(*r) +} + +func nextPowerOfTwo(length int) uint { + return 1 << bits.Len(uint(length)) +} + +// insertionSortCmpFunc sorts data[a:b] using insertion sort. +func insertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) { + for i := a + 1; i < b; i++ { + for j := i; j > a && (cmp(data[j], data[j-1]) < 0); j-- { + data[j], data[j-1] = data[j-1], data[j] + } + } +} + +// siftDownCmpFunc implements the heap property on data[lo:hi]. +// first is an offset into the array where the root of the heap lies. +func siftDownCmpFunc[E any](data []E, lo, hi, first int, cmp func(a, b E) int) { + root := lo + for { + child := 2*root + 1 + if child >= hi { + break + } + if child+1 < hi && (cmp(data[first+child], data[first+child+1]) < 0) { + child++ + } + if !(cmp(data[first+root], data[first+child]) < 0) { + return + } + data[first+root], data[first+child] = data[first+child], data[first+root] + root = child + } +} + +func heapSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) { + first := a + lo := 0 + hi := b - a + + // Build heap with greatest element at top. + for i := (hi - 1) / 2; i >= 0; i-- { + siftDownCmpFunc(data, i, hi, first, cmp) + } + + // Pop elements, largest first, into end of data. + for i := hi - 1; i >= 0; i-- { + data[first], data[first+i] = data[first+i], data[first] + siftDownCmpFunc(data, lo, i, first, cmp) + } +} + +// pdqsortCmpFunc sorts data[a:b]. +// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort. +// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf +// C++ implementation: https://github.com/orlp/pdqsort +// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/ +// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort. +func pdqsortCmpFunc[E any](data []E, a, b, limit int, cmp func(a, b E) int) { + const maxInsertion = 12 + + var ( + wasBalanced = true // whether the last partitioning was reasonably balanced + wasPartitioned = true // whether the slice was already partitioned + ) + + for { + length := b - a + + if length <= maxInsertion { + insertionSortCmpFunc(data, a, b, cmp) + return + } + + // Fall back to heapsort if too many bad choices were made. + if limit == 0 { + heapSortCmpFunc(data, a, b, cmp) + return + } + + // If the last partitioning was imbalanced, we need to breaking patterns. + if !wasBalanced { + breakPatternsCmpFunc(data, a, b, cmp) + limit-- + } + + pivot, hint := choosePivotCmpFunc(data, a, b, cmp) + if hint == decreasingHint { + reverseRangeCmpFunc(data, a, b, cmp) + // The chosen pivot was pivot-a elements after the start of the array. + // After reversing it is pivot-a elements before the end of the array. + // The idea came from Rust's implementation. + pivot = (b - 1) - (pivot - a) + hint = increasingHint + } + + // The slice is likely already sorted. + if wasBalanced && wasPartitioned && hint == increasingHint { + if partialInsertionSortCmpFunc(data, a, b, cmp) { + return + } + } + + // Probably the slice contains many duplicate elements, partition the slice into + // elements equal to and elements greater than the pivot. + if a > 0 && !(cmp(data[a-1], data[pivot]) < 0) { + mid := partitionEqualCmpFunc(data, a, b, pivot, cmp) + a = mid + continue + } + + mid, alreadyPartitioned := partitionCmpFunc(data, a, b, pivot, cmp) + wasPartitioned = alreadyPartitioned + + leftLen, rightLen := mid-a, b-mid + balanceThreshold := length / 8 + if leftLen < rightLen { + wasBalanced = leftLen >= balanceThreshold + pdqsortCmpFunc(data, a, mid, limit, cmp) + a = mid + 1 + } else { + wasBalanced = rightLen >= balanceThreshold + pdqsortCmpFunc(data, mid+1, b, limit, cmp) + b = mid + } + } +} + +// partitionCmpFunc does one quicksort partition. +// Let p = data[pivot] +// Moves elements in data[a:b] around, so that data[i]

=p for inewpivot. +// On return, data[newpivot] = p +func partitionCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int, alreadyPartitioned bool) { + data[a], data[pivot] = data[pivot], data[a] + i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned + + for i <= j && (cmp(data[i], data[a]) < 0) { + i++ + } + for i <= j && !(cmp(data[j], data[a]) < 0) { + j-- + } + if i > j { + data[j], data[a] = data[a], data[j] + return j, true + } + data[i], data[j] = data[j], data[i] + i++ + j-- + + for { + for i <= j && (cmp(data[i], data[a]) < 0) { + i++ + } + for i <= j && !(cmp(data[j], data[a]) < 0) { + j-- + } + if i > j { + break + } + data[i], data[j] = data[j], data[i] + i++ + j-- + } + data[j], data[a] = data[a], data[j] + return j, false +} + +// partitionEqualCmpFunc partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot]. +// It assumed that data[a:b] does not contain elements smaller than the data[pivot]. +func partitionEqualCmpFunc[E any](data []E, a, b, pivot int, cmp func(a, b E) int) (newpivot int) { + data[a], data[pivot] = data[pivot], data[a] + i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned + + for { + for i <= j && !(cmp(data[a], data[i]) < 0) { + i++ + } + for i <= j && (cmp(data[a], data[j]) < 0) { + j-- + } + if i > j { + break + } + data[i], data[j] = data[j], data[i] + i++ + j-- + } + return i +} + +// partialInsertionSortCmpFunc partially sorts a slice, returns true if the slice is sorted at the end. +func partialInsertionSortCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) bool { + const ( + maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted + shortestShifting = 50 // don't shift any elements on short arrays + ) + i := a + 1 + for j := 0; j < maxSteps; j++ { + for i < b && !(cmp(data[i], data[i-1]) < 0) { + i++ + } + + if i == b { + return true + } + + if b-a < shortestShifting { + return false + } + + data[i], data[i-1] = data[i-1], data[i] + + // Shift the smaller one to the left. + if i-a >= 2 { + for j := i - 1; j >= 1; j-- { + if !(cmp(data[j], data[j-1]) < 0) { + break + } + data[j], data[j-1] = data[j-1], data[j] + } + } + // Shift the greater one to the right. + if b-i >= 2 { + for j := i + 1; j < b; j++ { + if !(cmp(data[j], data[j-1]) < 0) { + break + } + data[j], data[j-1] = data[j-1], data[j] + } + } + } + return false +} + +// breakPatternsCmpFunc scatters some elements around in an attempt to break some patterns +// that might cause imbalanced partitions in quicksort. +func breakPatternsCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) { + length := b - a + if length >= 8 { + random := xorshift(length) + modulus := nextPowerOfTwo(length) + + for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ { + other := int(uint(random.Next()) & (modulus - 1)) + if other >= length { + other -= length + } + data[idx], data[a+other] = data[a+other], data[idx] + } + } +} + +// choosePivotCmpFunc chooses a pivot in data[a:b]. +// +// [0,8): chooses a static pivot. +// [8,shortestNinther): uses the simple median-of-three method. +// [shortestNinther,∞): uses the Tukey ninther method. +func choosePivotCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) (pivot int, hint sortedHint) { + const ( + shortestNinther = 50 + maxSwaps = 4 * 3 + ) + + l := b - a + + var ( + swaps int + i = a + l/4*1 + j = a + l/4*2 + k = a + l/4*3 + ) + + if l >= 8 { + if l >= shortestNinther { + // Tukey ninther method, the idea came from Rust's implementation. + i = medianAdjacentCmpFunc(data, i, &swaps, cmp) + j = medianAdjacentCmpFunc(data, j, &swaps, cmp) + k = medianAdjacentCmpFunc(data, k, &swaps, cmp) + } + // Find the median among i, j, k and stores it into j. + j = medianCmpFunc(data, i, j, k, &swaps, cmp) + } + + switch swaps { + case 0: + return j, increasingHint + case maxSwaps: + return j, decreasingHint + default: + return j, unknownHint + } +} + +// order2CmpFunc returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a. +func order2CmpFunc[E any](data []E, a, b int, swaps *int, cmp func(a, b E) int) (int, int) { + if cmp(data[b], data[a]) < 0 { + *swaps++ + return b, a + } + return a, b +} + +// medianCmpFunc returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c. +func medianCmpFunc[E any](data []E, a, b, c int, swaps *int, cmp func(a, b E) int) int { + a, b = order2CmpFunc(data, a, b, swaps, cmp) + b, c = order2CmpFunc(data, b, c, swaps, cmp) + a, b = order2CmpFunc(data, a, b, swaps, cmp) + return b +} + +// medianAdjacentCmpFunc finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a. +func medianAdjacentCmpFunc[E any](data []E, a int, swaps *int, cmp func(a, b E) int) int { + return medianCmpFunc(data, a-1, a, a+1, swaps, cmp) +} + +func reverseRangeCmpFunc[E any](data []E, a, b int, cmp func(a, b E) int) { + i := a + j := b - 1 + for i < j { + data[i], data[j] = data[j], data[i] + i++ + j-- + } +} + +func swapRangeCmpFunc[E any](data []E, a, b, n int, cmp func(a, b E) int) { + for i := 0; i < n; i++ { + data[a+i], data[b+i] = data[b+i], data[a+i] + } +} + +func stableCmpFunc[E any](data []E, n int, cmp func(a, b E) int) { + blockSize := 20 // must be > 0 + a, b := 0, blockSize + for b <= n { + insertionSortCmpFunc(data, a, b, cmp) + a = b + b += blockSize + } + insertionSortCmpFunc(data, a, n, cmp) + + for blockSize < n { + a, b = 0, 2*blockSize + for b <= n { + symMergeCmpFunc(data, a, a+blockSize, b, cmp) + a = b + b += 2 * blockSize + } + if m := a + blockSize; m < n { + symMergeCmpFunc(data, a, m, n, cmp) + } + blockSize *= 2 + } +} + +// symMergeCmpFunc merges the two sorted subsequences data[a:m] and data[m:b] using +// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum +// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz +// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in +// Computer Science, pages 714-723. Springer, 2004. +// +// Let M = m-a and N = b-n. Wolog M < N. +// The recursion depth is bound by ceil(log(N+M)). +// The algorithm needs O(M*log(N/M + 1)) calls to data.Less. +// The algorithm needs O((M+N)*log(M)) calls to data.Swap. +// +// The paper gives O((M+N)*log(M)) as the number of assignments assuming a +// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation +// in the paper carries through for Swap operations, especially as the block +// swapping rotate uses only O(M+N) Swaps. +// +// symMerge assumes non-degenerate arguments: a < m && m < b. +// Having the caller check this condition eliminates many leaf recursion calls, +// which improves performance. +func symMergeCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) { + // Avoid unnecessary recursions of symMerge + // by direct insertion of data[a] into data[m:b] + // if data[a:m] only contains one element. + if m-a == 1 { + // Use binary search to find the lowest index i + // such that data[i] >= data[a] for m <= i < b. + // Exit the search loop with i == b in case no such index exists. + i := m + j := b + for i < j { + h := int(uint(i+j) >> 1) + if cmp(data[h], data[a]) < 0 { + i = h + 1 + } else { + j = h + } + } + // Swap values until data[a] reaches the position before i. + for k := a; k < i-1; k++ { + data[k], data[k+1] = data[k+1], data[k] + } + return + } + + // Avoid unnecessary recursions of symMerge + // by direct insertion of data[m] into data[a:m] + // if data[m:b] only contains one element. + if b-m == 1 { + // Use binary search to find the lowest index i + // such that data[i] > data[m] for a <= i < m. + // Exit the search loop with i == m in case no such index exists. + i := a + j := m + for i < j { + h := int(uint(i+j) >> 1) + if !(cmp(data[m], data[h]) < 0) { + i = h + 1 + } else { + j = h + } + } + // Swap values until data[m] reaches the position i. + for k := m; k > i; k-- { + data[k], data[k-1] = data[k-1], data[k] + } + return + } + + mid := int(uint(a+b) >> 1) + n := mid + m + var start, r int + if m > mid { + start = n - b + r = mid + } else { + start = a + r = m + } + p := n - 1 + + for start < r { + c := int(uint(start+r) >> 1) + if !(cmp(data[p-c], data[c]) < 0) { + start = c + 1 + } else { + r = c + } + } + + end := n - start + if start < m && m < end { + rotateCmpFunc(data, start, m, end, cmp) + } + if a < start && start < mid { + symMergeCmpFunc(data, a, start, mid, cmp) + } + if mid < end && end < b { + symMergeCmpFunc(data, mid, end, b, cmp) + } +} + +// rotateCmpFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data: +// Data of the form 'x u v y' is changed to 'x v u y'. +// rotate performs at most b-a many calls to data.Swap, +// and it assumes non-degenerate arguments: a < m && m < b. +func rotateCmpFunc[E any](data []E, a, m, b int, cmp func(a, b E) int) { + i := m - a + j := b - m + + for i != j { + if i > j { + swapRangeCmpFunc(data, m-i, m, j, cmp) + i -= j + } else { + swapRangeCmpFunc(data, m-i, m+j-i, i, cmp) + j -= i + } + } + // i == j + swapRangeCmpFunc(data, m-i, m, i, cmp) +}