forked from lsaiml/CaVINet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
254 lines (206 loc) · 8.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import keras
from keras.utils.np_utils import to_categorical
from keras import regularizers
from keras import optimizers
from keras.preprocessing import image
from keras_vggface.vggface import VGGFace
from keras_vggface import utils
from keras.layers import Flatten, Dense, Input, Merge, Subtract, Multiply, Lambda, Dropout
from keras.layers.normalization import BatchNormalization
from keras.engine import Model
from scipy.misc import imread, imresize, imshow
from keras import backend as K
from keras.engine.topology import Layer
from keras.objectives import categorical_crossentropy
import random
import numpy as np
import tensorflow as tf
import gc
#custom parameters
nb_class = 143
base_dir = '/home/btp17-18-2/Data/' # Change it accordingly!
def get_data_from_file(file):
with open(file) as f:
content = f.readlines()
content = [x.strip() for x in content]
data_list = []
for i, val in enumerate(content):
ii = val.split(' ')
temp = [ii[0], ii[1], ii[2], ii[3], ii[4]]
data_list.append(temp)
data_list = np.asarray(data_list)
return data_list
def load_data(training_np):
training = get_data_from_file(training_np)
identities = np.load('../data_instances/identities.npy')
size = training.shape[0]
train_data = np.zeros((size, 224, 224, 6), dtype=np.float32)
train_labels = np.zeros((size, 3))
count = 0
for i in training:
if count >= size:
break
img1 = imread(base_dir + i[1])
img1 = imresize(img1, (224, 224))
img1 = np.float32(img1)
img1[:, :, 0] -= 93.5940
img1[:, :, 1] -= 104.7624
img1[:, :, 2] -= 129.1863
train_data[count, :, :, 0:3] = img1
# image 2
img2 = imread(base_dir + i[3])
img2 = imresize(img2, (224, 224))
img2 = np.float32(img2)
img2[:, :, 0] -= 93.5940
img2[:, :, 1] -= 104.7624
img2[:, :, 2] -= 129.1863
train_data[count, :, :, 3:6] = img2
train_labels[count, 0] = (np.where(identities == i[0]))[0][0]
train_labels[count, 1] = (np.where(identities == i[2]))[0][0]
train_labels[count, 2] = int(i[4])
count += 1
train_data /= 255.0
return train_data, train_labels
class update_weights(keras.callbacks.Callback):
def on_batch_end(self, batch, logs={}):
# get weights
lr = 0.0001
lag_mul = 0.2
W_weights = (self.model.layers[8].get_weights()[0])
P_C_weights = (self.model.layers[9].get_weights()[0])
P_V_weights = (self.model.layers[10].get_weights()[0])
# # update Shared Layer W
update_W = lr * lag_mul * np.dot(
np.dot(P_C_weights, np.transpose(P_C_weights)),
W_weights) + lr * lag_mul * np.dot(
np.dot(P_V_weights, np.transpose(P_V_weights)), W_weights)
W_weights = W_weights - (update_W)
self.model.layers[8].set_weights(
((W_weights), self.model.layers[8].get_weights()[1]))
# # update Unique Layer P_C
update_P_C = lr * lag_mul * np.dot(
np.dot(W_weights, np.transpose(W_weights)), P_C_weights)
P_C_weights = P_C_weights - (update_P_C)
self.model.layers[9].set_weights(
((P_C_weights), self.model.layers[9].get_weights()[1]))
update_P_C = None
P_C_weights = None
for i in range(3):
gc.collect()
# update Unique Layer P_V
update_P_V = lr * lag_mul * np.dot(
np.dot(W_weights, np.transpose(W_weights)), P_V_weights)
P_V_weights = P_V_weights - (update_P_V)
self.model.layers[10].set_weights(
((P_V_weights), self.model.layers[10].get_weights()[1]))
update_P_V = None
P_V_weights = None
update_W = None
W_weights = None
for i in range(3):
gc.collect()
def model():
# VGG model initialization with pretrained weights
vgg_model_cari = VGGFace(include_top=True, input_shape=(224, 224, 3))
last_layer_cari = vgg_model_cari.get_layer('pool5').output
for i in vgg_model_cari.layers[0:7]:
i.trainable = False
custom_vgg_model_cari = Model(vgg_model_cari.input, last_layer_cari)
vgg_model_visu = VGGFace(include_top=True, input_shape=(224, 224, 3))
last_layer_visu = vgg_model_visu.get_layer('pool5').output
for i in vgg_model_visu.layers[0:7]:
i.trainable = False
custom_vgg_model_visu = Model(vgg_model_visu.input, last_layer_visu)
# Input of the siamese network : Caricature and Visual images
caricature = Input(shape=(224, 224, 3), name='caricature')
visual = Input(shape=(224, 224, 3), name='visual')
# Get the ouput of the net for caricature and visual images
caricature_net_out = custom_vgg_model_cari(caricature)
caricature_net_out = Flatten()(caricature_net_out)
visual_net_out = custom_vgg_model_visu(visual)
visual_net_out = Flatten()(visual_net_out)
# Merge the two networks by taking the transformation P_C, P_V[Unique transformations of visual & Caricature] and W [shared transformation]
caricature_net_out = Dense(4096, activation="relu")(caricature_net_out)
visual_net_out = Dense(4096, activation="relu")(visual_net_out)
# Unique Layer - Caricature
P_C_layer = Dense(2084, activation="relu", name="P_C_layer")
P_C = P_C_layer(caricature_net_out)
# Unique Layer - Visual
P_V_layer = Dense(2084, activation="relu", name="P_V_layer")
P_V = P_V_layer(visual_net_out)
# Shared layers
W = Dense(
2084, activation="relu", name="W", kernel_initializer='glorot_uniform')
W_C = W(caricature_net_out)
W_V = W(visual_net_out)
d = keras.layers.Concatenate(axis=-1)([W_C, W_V])
d_1 = Dense(2048, activation="relu")(d)
d_2 = Dense(1024, activation="sigmoid")(d_1)
d_3 = Dense(2, activation="softmax", name='verification')(d_2)
# Merge Unique and Shared layers for getting the feature descriptor of the image
feature_caricature = keras.layers.Concatenate(axis=-1)([P_C, W_C])
feature_visual = keras.layers.Concatenate(axis=-1)([P_V, W_V])
# CARICATURE Classification Network - Dense layers
fc1_c = Dense(2048, activation="relu")(feature_caricature)
drop1_c = Dropout(0.6)(fc1_c)
fc2_c = Dense(1024, activation="relu")(drop1_c)
drop2_c = Dropout(0.6)(fc2_c)
fc3_c = Dense(
nb_class, activation="softmax",
name='caricature_classification')(drop2_c)
# VISUAL Classification Network - Dense layers
fc1_v = Dense(2048, activation="relu")(feature_visual)
drop1_v = Dropout(0.6)(fc1_v)
fc2_v = Dense(1024, activation="relu")(drop1_v)
drop2_v = Dropout(0.6)(fc2_v)
fc3_v = Dense(
nb_class, activation="softmax", name='visual_classification')(drop2_v)
model = Model([caricature, visual], [d_3, fc3_c, fc3_v])
return model
def train(model):
x_train, y_train = load_data(training_np)
x_val, y_val = load_data(validation_np)
train_labels_cate_cari = to_categorical(
y_train[:, 0], num_classes=nb_class)
train_labels_cate_vis = to_categorical(y_train[:, 1], num_classes=nb_class)
train_labels_verification = to_categorical(y_train[:, 2], num_classes=2)
val_labels_cate_cari = to_categorical(y_val[:, 0], num_classes=nb_class)
val_labels_cate_vis = to_categorical(y_val[:, 1], num_classes=nb_class)
val_labels_verification = to_categorical(y_val[:, 2], num_classes=2)
up_weights = update_weights()
# loss = custom_loss
model.load_weights(
'untied_softmax_weighted_error_33_33_33_lagmul_0.2_aug.h5')
sgd = optimizers.SGD(lr=0.0001, momentum=0.0, decay=0.0, nesterov=False)
model.compile(
loss=[
categorical_crossentropy, categorical_crossentropy,
categorical_crossentropy
],
loss_weights=[33, 33, 33],
optimizer=sgd,
metrics=['accuracy'])
model.fit(
[x_train[:, :, :, 0:3], x_train[:, :, :, 3:6]], [
train_labels_verification, train_labels_cate_cari,
train_labels_cate_vis
],
batch_size=25,
epochs=2,
verbose=1,
shuffle=True,
callbacks=[up_weights],
validation_data=([x_val[:, :, :, 0:3], x_val[:, :, :, 3:6]], [
val_labels_verification, val_labels_cate_cari, val_labels_cate_vis
]))
if __name__ == "__main__":
# For the training stage
accu = 0
accu_list = []
training_np = '../data_instances/train/training_5.txt'
validation_np = '../data_instances/validation_subset.txt'
testing_np = '../data_instances/testing.txt'
model = model()
print model.output
train(model)
model.save_weights("best_model.h5")