-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluateResultHierarchical.lua
607 lines (494 loc) · 23 KB
/
evaluateResultHierarchical.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
require 'image'
require 'torch'
require 'nn'
require 'cutorch'
require 'cunn'
require 'optim'
require 'cudnn'
dofile('utils/instanceNormalization.lua')
require 'lfs'
local hsp = require 'hsp'
local matio = require 'matio'
function split(inputstr, sep)
if sep == nil then
sep = "%s"
end
local t={} ; i=1
for str in string.gmatch(inputstr, "([^"..sep.."]+)") do
t[i] = str
i = i + 1
end
return t
end
networkParameters, evalParams = dofile(arg[2])
cutorch.setDevice(arg[1])
if (networkParameters.padding == nil) then
error("networkParameters.padding needs to be set to true or false")
end
if (evalParams.resolutionStr == nil) then
error("evalParams.resolutionStr as to be set")
end
local predColor = networkParameters.predictColors
local splitStr = evalParams.split
local objStr = ""
if evalParams.saveObj then
objStr = "_obj"
end
local metric = evalParams.metric
local padding = networkParameters.padding
dofile('utils/hierarchicalShapenetDataLoader.lua')
hierarchical3DShapeNetDataSet:setResolution(evalParams.resolutionStr)
if networkParameters.useColor then
hierarchical3DShapeNetDataSet:setColor()
end
if predColor then
hierarchical3DShapeNetDataSet:setLoadVoxelColors()
end
hierarchical3DShapeNetDataSet:setPath(evalParams.datasetFolder)
for c=1,#evalParams.classes do
if splitStr == "val" then
hierarchical3DShapeNetDataSet:addValDataFromClass(evalParams.classes[c])
elseif splitStr == "test" then
hierarchical3DShapeNetDataSet:addTestDataFromClass(evalParams.classes[c])
end
end
local peakPerformance = 0
local peakPerformanceIter = 0
local peakPerformanceThresh = 0
if metric == "CD" then
peakPerformance = 10 -- value which is bigger than biggest CD
end
local splitThreshold = networkParameters.splitThreshold
local volSoftMax = cudnn.VolumetricSoftMax():cuda()
local thresholds = evalParams.thresholds
local numLevels = networkParameters.numLevels
if (numLevels < 2) then
error("numLevels needs to be >= 2")
end
local gridRes = 8*math.pow(2,numLevels)
local AvGIoUhighResAvgFile = assert(io.open(evalParams.outputFolder .. "/evaluation_" .. splitStr .. objStr .."_AvG" .. metric .. "_Avg_highRes_" .. evalParams.snapshotStartIter .. ".txt", "w"))
AvGIoUhighResAvgFile:write("iter")
for t=1,#thresholds do
AvGIoUhighResAvgFile:write(", " .. thresholds[t])
end
AvGIoUhighResAvgFile:write("\n")
local AvGIoUhighResFiles = {}
for c=1,#evalParams.classes do
AvGIoUhighResFiles[evalParams.classes[c]] = assert(io.open(evalParams.outputFolder .. "/evaluation_" .. splitStr .. objStr .. "_AvG" .. metric .. "_" .. evalParams.classes[c] .. "_highRes_" .. evalParams.snapshotStartIter .. ".txt", "w"))
AvGIoUhighResFiles[evalParams.classes[c]]:write("iter")
for t=1,#thresholds do
AvGIoUhighResFiles[evalParams.classes[c]]:write(", " .. thresholds[t])
end
AvGIoUhighResFiles[evalParams.classes[c]]:write("\n")
end
--generate obj folders if objs output is written
local meshFolderBaseName
if (evalParams.saveObj == true) then
if predColor then
meshFolderBaseName = "col_plys"
else
meshFolderBaseName = "objs"
end
local objFolderExists = lfs.attributes(evalParams.outputFolder .. "/" .. meshFolderBaseName .. "_" .. splitStr .. "/",'modification')
if (objFolderExists == nil) then
lfs.mkdir(evalParams.outputFolder .. "/" ..meshFolderBaseName .. "_" .. splitStr .. "/",'modification')
end
for c=1,#evalParams.classes do
local classFolderExists = lfs.attributes(evalParams.outputFolder .. "/" .. meshFolderBaseName .. "_" .. splitStr .. "/" .. evalParams.classes[c], 'modification')
if (classFolderExists == nil) then
lfs.mkdir(evalParams.outputFolder .. "/" .. meshFolderBaseName .. "_" .. splitStr .. "/" .. evalParams.classes[c])
end
end
end
local numPredVoxels = {}
if (evalParams.computeNumPredVoxels) then
for c=1,#evalParams.classes do
numPredVoxels[evalParams.classes[c]] = torch.Tensor(numLevels):zero()
end
end
local featBlockBoundary1, featBlockBoundary2, featBlockBoundary3
if padding then
featBlockBoundary1 = 12
featBlockBoundary2 = 9
featBlockBoundary3 = 20
else
featBlockBoundary1 = 8
featBlockBoundary2 = 9
featBlockBoundary3 = 16
end
for iter=evalParams.snapshotStartIter,evalParams.snapshotEndIter,evalParams.snapshotInterval do
local totalIoUHR = {}
local numEvaluatedElements = {}
for c=1,#evalParams.classes do
totalIoUHR[evalParams.classes[c]] = {}
numEvaluatedElements[evalParams.classes[c]] = 0
for t=1,#thresholds do
totalIoUHR[evalParams.classes[c]][t] = 0
end
end
if not evalParams.loadCache then
net = torch.load(evalParams.highResSnapshotPath .. "/net" .. iter .. ".t7")
net:evaluate()
-- open output file
local IoUhighResFile = assert(io.open(evalParams.outputFolder .. "/evaluation_" .. splitStr .. objStr .. "_" .. metric .. "_highRes_" .. iter .. ".txt", "w"))
IoUhighResFile:write("modelName")
for t=1,#thresholds do
IoUhighResFile:write(", " .. thresholds[t])
end
IoUhighResFile:write("\n")
local numEvalFiles = 0
if splitStr == "val" then
numEvalFiles = #hierarchical3DShapeNetDataSet.valDataFiles
else
numEvalFiles = #hierarchical3DShapeNetDataSet.testDataFiles
end
for j=1,numEvalFiles do
if ((j-1)%evalParams.subsampling == 0) then
local obs, blockIndices, blocks, modelName
if splitStr == "val" then
obs, blockIndices, blocks, modelName = hierarchical3DShapeNetDataSet:getNextValExample(false, false)
else
obs, blockIndices, blocks, modelName = hierarchical3DShapeNetDataSet:getNextTestExample(false, false)
end
class = split(modelName, "/")[1]
IoUhighResFile:write(modelName .. " ")
if networkParameters.useColor then
input = obs:view(1,3,128,128):cuda()
else
input = obs:view(1,1,128,128):cuda()
end
for l=1,numLevels do
blocks[l] = blocks[l]:cuda()
end
print("Iteration " .. iter .. " running model " .. j .. " : " .. modelName)
-- forward pass through the network
outputs = {}
outputMasks = {}
outputsColor = {}
outputs[1] = torch.Tensor(1,3,16,16,16):cuda():zero()
outputMasks[1] = torch.Tensor(1,1,16,16,16):cuda():zero()
if predColor then
outputsColor[1] = torch.Tensor(1, 3, 16, 16, 16):cuda():zero()
end
for l=2,numLevels-1 do
currSize = outputs[l-1]:size()
outputs[l] = torch.Tensor(currSize[1],currSize[2],2*currSize[3],2*currSize[4],2*currSize[5]):cuda():zero()
outputMasks[l] = torch.Tensor(currSize[1],1,2*currSize[3],2*currSize[4],2*currSize[5]):cuda():zero()
if predColor then
outputsColor[l] = torch.Tensor(currSize[1],currSize[2],2*currSize[3],2*currSize[4],2*currSize[5]):cuda():zero()
end
end
currSize = outputs[numLevels-1]:size()
outputs[numLevels] = torch.Tensor(currSize[1],1,2*currSize[3],2*currSize[4],2*currSize[5]):cuda():zero()
outputMasks[numLevels] = torch.Tensor(currSize[1],1,2*currSize[3],2*currSize[4],2*currSize[5]):cuda():zero()
if predColor then
outputsColor[numLevels] = torch.Tensor(currSize[1],currSize[2],2*currSize[3],2*currSize[4],2*currSize[5]):cuda():zero()
end
curNumPredVoxels = torch.Tensor(numLevels):zero()
-- run first stage
result = net:get(1):forward(input)
local function evaluateFull(output, x, y, z, level)
if predColor then
outputs[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:copy(output[{1,1,{},{},{}}])
outputsColor[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:copy(output[{1,{2,4},{},{},{}}])
else
outputs[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:copy(output)
end
if evalParams.computeNumPredVoxels then
curNumPredVoxels[level] = curNumPredVoxels[level] + 16*16*16
end
outputMasks[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:fill(1)
end
local function evaluateIntermediate(output, feature, x, y, z, level)
if predColor then
outputsColor[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:copy(output[{1,{4,6},{},{},{}}])
end
if evalParams.computeNumPredVoxels then
curNumPredVoxels[level] = curNumPredVoxels[level] + 16*16*16
end
local outputSoftMax = volSoftMax:forward(output)
-- copy output
outputs[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:copy(output[{1,{1,3},{},{},{}}])
outputMasks[level][{{1,1},{},{16*x+1,16*(x+1)},{16*y+1,16*(y+1)},{16*z+1,16*(z+1)}}]:fill(1)
-- compute thresholds for splits
local maxVal1 = torch.max(outputSoftMax[{1,3,{1,8},{1,8},{1,8}}])
local maxVal2 = torch.max(outputSoftMax[{1,3,{1,8},{1,8},{9,16}}])
local maxVal3 = torch.max(outputSoftMax[{1,3,{1,8},{9,16},{1,8}}])
local maxVal4 = torch.max(outputSoftMax[{1,3,{1,8},{9,16},{9,16}}])
local maxVal5 = torch.max(outputSoftMax[{1,3,{9,16},{1,8},{1,8}}])
local maxVal6 = torch.max(outputSoftMax[{1,3,{9,16},{1,8},{9,16}}])
local maxVal7 = torch.max(outputSoftMax[{1,3,{9,16},{9,16},{1,8}}])
local maxVal8 = torch.max(outputSoftMax[{1,3,{9,16},{9,16},{9,16}}])
if (maxVal1 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{1,featBlockBoundary1},{1,featBlockBoundary1},{1,featBlockBoundary1}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x, 2*y, 2*z, level+1)
else
evaluateFull(result, 2*x, 2*y, 2*z, level+1)
end
end
if (maxVal2 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{1,featBlockBoundary1},{1,featBlockBoundary1},{featBlockBoundary2,featBlockBoundary3}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x, 2*y, 2*z+1, level+1)
else
evaluateFull(result, 2*x, 2*y, 2*z+1, level+1)
end
end
if (maxVal3 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{1,featBlockBoundary1},{featBlockBoundary2,featBlockBoundary3},{1,featBlockBoundary1}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x, 2*y+1, 2*z, level+1)
else
evaluateFull(result, 2*x, 2*y+1, 2*z, level+1)
end
end
if (maxVal4 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{1,featBlockBoundary1},{featBlockBoundary2,featBlockBoundary3},{featBlockBoundary2,featBlockBoundary3}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x, 2*y+1, 2*z+1, level+1)
else
evaluateFull(result, 2*x, 2*y+1, 2*z+1, level+1)
end
end
if (maxVal5 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{featBlockBoundary2,featBlockBoundary3},{1,featBlockBoundary1},{1,featBlockBoundary1}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x+1, 2*y, 2*z, level+1)
else
evaluateFull(result, 2*x+1, 2*y, 2*z, level+1)
end
end
if (maxVal6 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{featBlockBoundary2,featBlockBoundary3},{1,featBlockBoundary1},{featBlockBoundary2,featBlockBoundary3}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x+1, 2*y, 2*z+1, level+1)
else
evaluateFull(result, 2*x+1, 2*y, 2*z+1, level+1)
end
end
if (maxVal7 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{featBlockBoundary2,featBlockBoundary3},{featBlockBoundary2,featBlockBoundary3},{1,featBlockBoundary1}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x+1, 2*y+1, 2*z, level+1)
else
evaluateFull(result, 2*x+1, 2*y+1, 2*z, level+1)
end
end
if (maxVal8 > splitThreshold) then
local result = net:get(level+1):forward(feature[{{1,1},{},{featBlockBoundary2,featBlockBoundary3},{featBlockBoundary2,featBlockBoundary3},{featBlockBoundary2,featBlockBoundary3}}])
if (level < numLevels-1) then
evaluateIntermediate(result[1],result[2], 2*x+1, 2*y+1, 2*z+1, level+1)
else
evaluateFull(result, 2*x+1, 2*y+1, 2*z+1, level+1)
end
end
end
resultSingleOutput = result[1][{{1,1},{},{},{},{}}]
resultSingleFeature = result[2][{{1,1},{},{},{},{}}]
evaluateIntermediate(resultSingleOutput, resultSingleFeature, 0, 0, 0, 1)
numEvaluatedElements[class] = numEvaluatedElements[class] + 1
-- compile the solution
local softMaxLayer = cudnn.VolumetricSoftMax():cuda()
outputsCompiled = {}
local upSampleLayer = nn.VolumetricFullConvolution(1,1,2,2,2,2,2,2,0,0,0)
upSampleLayer.bias:zero()
upSampleLayer.weight:fill(1)
upSampleLayer = upSampleLayer:cuda()
outputsCompiled = {}
outputsCompiled[1] = outputs[1]:clone()
local outputsCompiledColor = {}
if predColor then
outputsCompiledColor[1] = outputsColor[1]:clone()
end
for l=2,numLevels-1 do
outputsCompiled[l] = outputs[l]:clone()
local copyMask = torch.eq(outputMasks[l], 0):cuda()
outputsCompiled[l][{{},{1},{},{},{}}]:add(upSampleLayer:forward(outputsCompiled[l-1][{{},{1},{},{},{}}]):cmul(copyMask))
outputsCompiled[l][{{},{2},{},{},{}}]:add(upSampleLayer:forward(outputsCompiled[l-1][{{},{2},{},{},{}}]):cmul(copyMask))
outputsCompiled[l][{{},{3},{},{},{}}]:add(upSampleLayer:forward(outputsCompiled[l-1][{{},{3},{},{},{}}]):cmul(copyMask))
if predColor then
outputsCompiledColor[l] = outputsColor[l]:clone()
outputsCompiledColor[l][{{},{1},{},{},{}}]:add(upSampleLayer:forward(outputsCompiledColor[l-1][{{},{1},{},{},{}}]):cmul(copyMask))
outputsCompiledColor[l][{{},{2},{},{},{}}]:add(upSampleLayer:forward(outputsCompiledColor[l-1][{{},{2},{},{},{}}]):cmul(copyMask))
outputsCompiledColor[l][{{},{3},{},{},{}}]:add(upSampleLayer:forward(outputsCompiledColor[l-1][{{},{3},{},{},{}}]):cmul(copyMask))
end
end
outputsCompiled[numLevels] = outputs[numLevels]:clone()
local copyMask = torch.eq(outputMasks[numLevels], 0):cuda()
local smOutputBefore = softMaxLayer:forward(outputsCompiled[numLevels-1])
local outputsCompiledTwoLabel = torch.add(smOutputBefore[{{},{2},{},{},{}}], smOutputBefore[{{},{3},{},{},{}}])
outputsCompiled[numLevels]:add(upSampleLayer:forward(outputsCompiledTwoLabel):cmul(copyMask))
if predColor then
outputsCompiledColor[numLevels] = outputsColor[numLevels]:clone()
outputsCompiledColor[numLevels][{{},{1},{},{},{}}]:add(upSampleLayer:forward(outputsCompiledColor[numLevels-1][{{},{1},{},{},{}}]):cmul(copyMask))
outputsCompiledColor[numLevels][{{},{2},{},{},{}}]:add(upSampleLayer:forward(outputsCompiledColor[numLevels-1][{{},{2},{},{},{}}]):cmul(copyMask))
outputsCompiledColor[numLevels][{{},{3},{},{},{}}]:add(upSampleLayer:forward(outputsCompiledColor[numLevels-1][{{},{3},{},{},{}}]):cmul(copyMask))
end
-- compile the ground truth
groundTruths = {}
for l=1,numLevels do
local bISize = blockIndices[l]:size()
groundTruths[l] = torch.Tensor(1,16*bISize[1],16*bISize[2],16*bISize[3]):cuda()
for bx=1,bISize[1] do
for by=1,bISize[2] do
for bz=1,bISize[3] do
local bI = blockIndices[l][bx][by][bz]
groundTruths[l][1][{{(bx-1)*16+1,bx*16},{(by-1)*16+1,by*16},{(bz-1)*16+1,bz*16}}]:copy(blocks[l][bI],1,2)
end
end
end
end
-- compute Error Measures-
local labelBoundary
local labelEDT
if metric == "CD" then
labelBoundary = groundTruths[numLevels]:clone():view(gridRes,gridRes,gridRes):double()
hsp.boundary(labelBoundary)
labelEDT = groundTruths[numLevels]:clone():view(gridRes, gridRes, gridRes):double()
hsp.boundaryEDT(labelEDT)
end
for t=1,#thresholds do
local threshold = thresholds[t]
local binarizedResult = outputsCompiled[numLevels]:clone()
binarizedResult[torch.le(binarizedResult, threshold)] = 0
binarizedResult[torch.ge(binarizedResult, threshold)] = 1
if (metric == "CD") then
if torch.max(binarizedResult) < 1 then
local maxVal = torch.max(outputsCompiled[numLevels])
binarizedResult[torch.ge(outputsCompiled[numLevels],maxVal-1e-5)] = 1
end
end
-- compute IoU
local measure
if metric == "IoU" then
local unionHR = torch.cmax(binarizedResult, groundTruths[numLevels])
local intersectionHR = torch.cmin(binarizedResult, groundTruths[numLevels])
local IoUHR = torch.sum(intersectionHR)/torch.sum(unionHR)
measure = IoUHR
elseif metric == "CD" then
local outputVolBoundary = binarizedResult:clone():view(gridRes, gridRes, gridRes):double()
hsp.boundary(outputVolBoundary)
local outputEDT = binarizedResult:clone():view(gridRes, gridRes, gridRes):double()
hsp.boundaryEDT(outputEDT)
local numOutputVolBoundary = torch.sum(outputVolBoundary)
local numLabelBoundary = torch.sum(labelBoundary)
--print(torch.max(labelEDT))
if (numOutputVolBoundary > 0 and numLabelBoundary > 0) then
local cd1 = torch.sum(torch.cmul(outputVolBoundary, labelEDT))/(gridRes*numOutputVolBoundary)
local cd2 = torch.sum(torch.cmul(labelBoundary, outputEDT))/(gridRes*numLabelBoundary)
--print("cd1 = " .. cd1 .. " cd2 = " .. cd2)
measure = (cd1 + cd2)/2
else
measure = math.sqrt(3)/2.0
end
--print(measure)
end
IoUhighResFile:write(measure .. " ")
totalIoUHR[class][t] = totalIoUHR[class][t] + measure
end
if evalParams.computeNumPredVoxels then
numPredVoxels[class]:add(curNumPredVoxels)
end
IoUhighResFile:write("\n")
IoUhighResFile:flush()
if (evalParams.saveObj == true) then
local folderString = "objs_"
if predColor then
for ol=1,5 do
if ol < 5 then
local currOutput = outputsCompiled[ol][1]:clone()
currOutput = softMaxLayer:forward(currOutput)
currOutput[2]:add(currOutput[3])
hsp.saveColoredMeshAsPLY(currOutput[2]:double(),outputsCompiledColor[ol]:double()[{1,{},{},{},{}}],evalParams.marchingCubesThreshold, evalParams.outputFolder .. "/col_plys_" .. splitStr .."/" .. modelName .. "_" .. ol .. ".ply")
else
hsp.saveColoredMeshAsPLY(outputsCompiled[ol][{1,1,{},{},{}}]:double(),outputsCompiledColor[ol]:double()[{1,{},{},{},{}}],evalParams.marchingCubesThreshold, evalParams.outputFolder .. "/col_plys_" .. splitStr .."/" .. modelName .. ".ply")
end
end
folderString = "col_plys_"
else
hsp.saveMeshAsObj(outputsCompiled[numLevels][{1,1,{},{},{}}]:double(),evalParams.marchingCubesThreshold, evalParams.outputFolder .. "/objs_" .. splitStr .."/" .. modelName .. ".obj")
end
if networkParameters.useColor then
image.save(evalParams.outputFolder .. "/" .. folderString .. splitStr .."/" .. modelName .. "_input.png", obs)
else
obs = obs + 0.866
obs = obs:div(2*0.866)
image.save(evalParams.outputFolder .. "/" .. folderString .. splitStr .."/" .. modelName .. "_input.png", obs)
end
end
else
if splitStr == "val" then
hierarchical3DShapeNetDataSet:skipNextValExample()
else
hierarchical3DShapeNetDataSet:skipNextTestExample()
end
end
end
else
-- loading the data from the valDataFiles, computing statistics
local IoUhighResFile = assert(io.open(evalParams.outputFolder .. "/evaluation_" .. splitStr .. "_" .. metric .. "_highRes_" .. iter .. ".txt", "r"))
titleLine = true
for line in IoUhighResFile:lines() do
if titleLine then
titleLine = false
else
-- reading data
elements = split(line, " ")
class = split(elements[1], "/")[1]
print (elements[1])
for t=1,#thresholds do
totalIoUHR[class][t] = totalIoUHR[class][t] + tonumber(elements[t+1])
end
numEvaluatedElements[class] = numEvaluatedElements[class] + 1
end
end
end
local IoUAvgs = {}
for t=1,#thresholds do
IoUAvgs[t] = 0
end
for c=1,#evalParams.classes do
AvGIoUhighResFiles[evalParams.classes[c]]:write(iter)
for t=1,#thresholds do
local classIoU = totalIoUHR[evalParams.classes[c]][t] / numEvaluatedElements[evalParams.classes[c]]
AvGIoUhighResFiles[evalParams.classes[c]]:write(" " .. classIoU)
IoUAvgs[t] = IoUAvgs[t] + classIoU
end
AvGIoUhighResFiles[evalParams.classes[c]]:write("\n")
AvGIoUhighResFiles[evalParams.classes[c]]:flush()
end
AvGIoUhighResAvgFile:write(iter)
for t=1,#thresholds do
local IoUAvg = IoUAvgs[t]/#evalParams.classes
AvGIoUhighResAvgFile:write(" " .. IoUAvg)
if metric == "IoU" then
if (IoUAvg > peakPerformance) then
peakPerformance = IoUAvg
peakPerformanceIter = iter
peakPerformanceThresh = thresholds[t]
end
elseif metric == "CD" then
if (IoUAvg < peakPerformance) then
peakPerformance = IoUAvg
peakPerformanceIter = iter
peakPerformanceThresh = thresholds[t]
end
end
end
AvGIoUhighResAvgFile:write("\n")
AvGIoUhighResAvgFile:flush()
if evalParams.computeNumPredVoxels then
for c=1,#evalParams.classes do
local classString = evalParams.classes[c]
for l=1,numLevels do
classString = classString .. " " .. numPredVoxels[evalParams.classes[c]][l]/numEvaluatedElements[evalParams.classes[c]]
end
print(classString)
end
end
end
--
print("peakPerformance = " .. peakPerformance)
print("peakPerformanceIter = " .. peakPerformanceIter)
print("peakPerformanceThresh = " .. peakPerformanceThresh)