forked from jameswcraig/tidyvpc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
49 lines (49 loc) · 1.49 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Package: tidyvpc
Type: Package
Title: VPC Percentiles and Prediction Intervals
Version: 1.0.0
Date: 2020-02-17
Authors@R: c(
person("Olivier", "Barriere", email = "olivier.barriere@gmail.com",
role = c("aut")),
person("Benjamin", "Rich", email = "mail@benjaminrich.net",
role = c("aut")),
person("James", "Craig", email = "jameswbcraig@gmail.com",
role = c("aut", "cre")),
person("Samer", "Mouksassi", email = "samermouksassi@gmail.com",
role = c("aut")),
person("Kris", "Jamsen",
role = c("ctb"))
)
Description: Perform a Visual Predictive Check (VPC), while accounting for
stratification, censoring, and prediction correction. Using piping from
'magrittr', the intuitive syntax gives users a flexible and powerful method
to generate VPCs using both traditional binning and a new binless approach
Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile
Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS)
prediction correction.
URL: https://github.com/jameswcraig/tidyvpc
BugReports: https://github.com/jameswcraig/tidyvpc/issues
Depends:
R (>= 3.3.0),
data.table (>= 1.9.8),
magrittr,
quantreg (>= 5.51)
Imports:
rlang (>= 0.3.0),
methods
Suggests:
cluster,
classInt,
KernSmooth,
ggplot2,
shiny,
remotes,
vpc,
knitr,
rmarkdown
License: MIT + file LICENSE
LazyData: true
Encoding: UTF-8
VignetteBuilder: knitr
RoxygenNote: 7.0.2.9000