-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathreedsolomon.cpp
266 lines (228 loc) · 9.78 KB
/
reedsolomon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// The MIT License (MIT)
// Copyright (c) 2016 Daniel Fu
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// Created by 理 傅 on 2017/1/1.
//
#include "reedsolomon.h"
#include "galois_noasm.h"
#include <iostream>
#include <stdexcept>
#include <vector>
ReedSolomon::ReedSolomon(int dataShards, int parityShards)
: m_dataShards(dataShards), m_parityShards(parityShards),
m_totalShards(dataShards + parityShards) {
tree = inversionTree::newInversionTree(dataShards, parityShards);
}
ReedSolomon ReedSolomon::New(int dataShards, int parityShards) {
if (dataShards <= 0 || parityShards <= 0) {
throw std::invalid_argument(
"cannot create Encoder with zero or less data/parity shards");
}
if (dataShards + parityShards > 255) {
throw std::invalid_argument(
"cannot create Encoder with 255 or more data+parity shards");
}
ReedSolomon r(dataShards, parityShards);
// Start with a Vandermonde matrix. This matrix would work,
// in theory, but doesn't have the property that the data
// shards are unchanged after encoding.
matrix vm = matrix::vandermonde(r.m_totalShards, r.m_dataShards);
// Multiply by the inverse of the top square of the matrix.
// This will make the top square be the identity matrix, but
// preserve the property that any square subset of rows is
// invertible.
auto top = vm.SubMatrix(0, 0, dataShards, dataShards);
top = top.Invert();
r.m = vm.Multiply(top);
// Inverted matrices are cached in a tree keyed by the indices
// of the invalid rows of the data to reconstruct.
// The inversion m_root node will have the identity matrix as
// its inversion matrix because it implies there are no errors
// with the original data.
r.tree = inversionTree::newInversionTree(dataShards, parityShards);
r.parity = std::vector<row_type>(parityShards);
for (int i = 0; i < parityShards; i++) {
r.parity[i] = r.m.data[dataShards + i];
}
return r;
}
void ReedSolomon::Encode(std::vector<row_type> &shards) {
if (shards.size() != m_totalShards) {
throw std::invalid_argument("too few shards given");
}
checkShards(shards, false);
// Get the slice of output buffers.
std::vector<row_type> output(shards.begin() + m_dataShards, shards.end());
// Do the coding.
std::vector<row_type> input(shards.begin(), shards.begin() + m_dataShards);
codeSomeShards(parity, input, output, m_parityShards);
};
void ReedSolomon::codeSomeShards(std::vector<row_type> &matrixRows,
std::vector<row_type> &inputs,
std::vector<row_type> &outputs,
int outputCount) {
for (int c = 0; c < m_dataShards; c++) {
auto in = inputs[c];
for (int iRow = 0; iRow < outputCount; iRow++) {
if (c == 0) {
galMulSlice((*matrixRows[iRow])[c], in, outputs[iRow]);
} else {
galMulSliceXor((*matrixRows[iRow])[c], in, outputs[iRow]);
}
}
}
}
void ReedSolomon::Reconstruct(std::vector<row_type> &shards) {
if (shards.size() != m_totalShards) {
throw std::invalid_argument("too few shards given");
}
// Check arguments
checkShards(shards, true);
auto shardSize = this->shardSize(shards);
// Quick check: are all of the shards present? If so, there's
// nothing to do.
int numberPresent = 0;
for (int i = 0; i < m_totalShards; i++) {
if (shards[i] != nullptr) {
numberPresent++;
}
}
if (numberPresent == m_totalShards) {
// Cool. All of the shards data data. We don't
// need to do anything.
return;
}
// More complete sanity check
if (numberPresent < m_dataShards) {
throw std::invalid_argument("too few shards given");
}
// Pull out an array holding just the shards that
// correspond to the rows of the submatrix. These shards
// will be the Input to the decoding process that re-creates
// the missing data shards.
//
// Also, create an array of indices of the valid rows we do have
// and the invalid rows we don't have up until we have enough valid rows.
std::vector<row_type> subShards(m_dataShards);
std::vector<int> validIndices(m_dataShards, 0);
std::vector<int> invalidIndices;
int subMatrixRow = 0;
for (int matrixRow = 0;
matrixRow < m_totalShards && subMatrixRow < m_dataShards;
matrixRow++) {
if (shards[matrixRow] != nullptr) {
subShards[subMatrixRow] = shards[matrixRow];
validIndices[subMatrixRow] = matrixRow;
subMatrixRow++;
} else {
invalidIndices.push_back(matrixRow);
}
}
// Attempt to get the cached inverted matrix out of the tree
// based on the indices of the invalid rows.
auto dataDecodeMatrix = tree.GetInvertedMatrix(invalidIndices);
// If the inverted matrix isn't cached in the tree yet we must
// construct it ourselves and insert it into the tree for the
// future. In this way the inversion tree is lazily loaded.
if (dataDecodeMatrix.empty()) {
// Pull out the rows of the matrix that correspond to the
// shards that we have and build a square matrix. This
// matrix could be used to generate the shards that we have
// from the original data.
auto subMatrix = matrix::newMatrix(m_dataShards, m_dataShards);
for (subMatrixRow = 0; subMatrixRow < validIndices.size();
subMatrixRow++) {
for (int c = 0; c < m_dataShards; c++) {
subMatrix.at(subMatrixRow, c) =
m.at(validIndices[subMatrixRow], c);
};
}
// Invert the matrix, so we can go from the encoded shards
// back to the original data. Then pull out the row that
// generates the shard that we want to Decode. Note that
// since this matrix maps back to the original data, it can
// be used to create a data shard, but not a parity shard.
dataDecodeMatrix = subMatrix.Invert();
if (dataDecodeMatrix.empty()) {
throw std::runtime_error("cannot get matrix invert");
}
// Cache the inverted matrix in the tree for future use keyed on the
// indices of the invalid rows.
int ret = tree.InsertInvertedMatrix(invalidIndices, dataDecodeMatrix,
m_totalShards);
if (ret != 0) {
throw std::runtime_error("cannot insert matrix invert");
}
}
// Re-create any data shards that were missing.
//
// The Input to the coding is all of the shards we actually
// have, and the output is the missing data shards. The computation
// is done using the special Decode matrix we just built.
std::vector<row_type> outputs(m_parityShards);
std::vector<row_type> matrixRows(m_parityShards);
int outputCount = 0;
for (int iShard = 0; iShard < m_dataShards; iShard++) {
if (shards[iShard] == nullptr) {
shards[iShard] = std::make_shared<std::vector<byte>>(shardSize);
outputs[outputCount] = shards[iShard];
matrixRows[outputCount] = dataDecodeMatrix.data[iShard];
outputCount++;
}
}
codeSomeShards(matrixRows, subShards, outputs, outputCount);
// Now that we have all of the data shards intact, we can
// compute any of the parity that is missing.
//
// The Input to the coding is ALL of the data shards, including
// any that we just calculated. The output is whichever of the
// data shards were missing.
outputCount = 0;
for (int iShard = m_dataShards; iShard < m_totalShards; iShard++) {
if (shards[iShard] == nullptr) {
shards[iShard] = std::make_shared<std::vector<byte>>(shardSize);
outputs[outputCount] = shards[iShard];
matrixRows[outputCount] = parity[iShard - m_dataShards];
outputCount++;
}
}
codeSomeShards(matrixRows, shards, outputs, outputCount);
}
void ReedSolomon::checkShards(std::vector<row_type> &shards, bool nilok) {
auto size = shardSize(shards);
if (size == 0) {
throw std::invalid_argument("no shard data");
}
for (int i = 0; i < shards.size(); i++) {
if (shards[i] == nullptr) {
if (!nilok) {
throw std::invalid_argument("shard sizes does not match");
}
} else if (shards[i]->size() != size) {
throw std::invalid_argument("shard sizes does not match");
}
}
}
int ReedSolomon::shardSize(std::vector<row_type> &shards) {
for (int i = 0; i < shards.size(); i++) {
if (shards[i] != nullptr) {
return shards[i]->size();
}
}
return 0;
}