-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathinversion_tree.cpp
139 lines (119 loc) · 5.99 KB
/
inversion_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// The MIT License (MIT)
// Copyright (c) 2016 Daniel Fu
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// Created by 理 傅 on 2017/1/1.
//
#include "inversion_tree.h"
#include <iostream>
inversionTree inversionTree::newInversionTree(int dataShards,
int parityShards) {
inversionTree tree;
tree.m_root.m_children.resize(dataShards + parityShards, nullptr);
tree.m_root.m_matrix = matrix::identityMatrix(dataShards);
return tree;
}
matrix inversionTree::GetInvertedMatrix(std::vector<int> &invalidIndices) {
if (invalidIndices.size() == 0) {
return m_root.m_matrix;
}
return m_root.getInvertedMatrix(invalidIndices, 0);
}
int inversionTree::InsertInvertedMatrix(std::vector<int> &invalidIndices,
matrix &matrix, int shards) {
// If no invalid indices were given then we are done because the
// m_root node is already set with the identity matrix.
if (invalidIndices.size() == 0) {
return -1;
}
if (!matrix.IsSquare()) {
return -2;
}
// Recursively create nodes for the inverted matrix in the tree until
// we reach the node to insert the matrix to. We start by passing in
// 0 as the parent index as we start at the m_root of the tree.
m_root.insertInvertedMatrix(invalidIndices, matrix, shards, 0);
return 0;
}
matrix inversionNode::getInvertedMatrix(std::vector<int> &invalidIndices,
int parent) {
// Get the child node to search next from the list of m_children. The
// list of m_children starts relative to the parent index passed in
// because the indices of invalid rows is sorted (by default). As we
// search recursively, the first invalid index gets popped off the list,
// so when searching through the list of m_children, use that first invalid
// index to find the child node.
int firstIndex = invalidIndices[0];
auto node = m_children[firstIndex - parent];
// If the child node doesn't exist in the list yet, fail fast by
// returning, so we can construct and insert the proper inverted matrix.
if (node == nullptr) {
return matrix{};
}
// If there's more than one invalid index left in the list we should
// keep searching recursively.
if (invalidIndices.size() > 1) {
// Search recursively on the child node by passing in the invalid
// indices with the first index popped off the front. Also the parent
// index to pass down is the first index plus one.
std::vector<int> v(invalidIndices.begin() + 1, invalidIndices.end());
return node->getInvertedMatrix(v, firstIndex + 1);
}
// If there aren't any more invalid indices to search, we've found our
// node. Return it, however keep in mind that the matrix could still be
// nil because intermediary nodes in the tree are created sometimes with
// their inversion matrices uninitialized.
// std::cout << "return cached matrix:" << std::endl;
return node->m_matrix;
}
void inversionNode::insertInvertedMatrix(std::vector<int> &invalidIndices,
struct matrix &matrix, int shards,
int parent) {
// As above, get the child node to search next from the list of m_children.
// The list of m_children starts relative to the parent index passed in
// because the indices of invalid rows is sorted (by default). As we
// search recursively, the first invalid index gets popped off the list,
// so when searching through the list of m_children, use that first invalid
// index to find the child node.
int firstIndex = invalidIndices[0];
auto node = m_children[firstIndex - parent];
// If the child node doesn't exist in the list yet, create a new
// node because we have the writer lock and add it to the list
// of m_children.
if (node == nullptr) {
// Make the length of the list of m_children equal to the number
// of shards minus the first invalid index because the list of
// invalid indices is sorted, so only this length of errors
// are possible in the tree.
node = std::make_shared<inversionNode>();
node->m_children.resize(shards - firstIndex, nullptr);
m_children[firstIndex - parent] = node;
}
// If there's more than one invalid index left in the list we should
// keep searching recursively in order to find the node to add our
// matrix.
if (invalidIndices.size() > 1) {
// As above, search recursively on the child node by passing in
// the invalid indices with the first index popped off the front.
// Also the total number of shards and parent index are passed down
// which is equal to the first index plus one.
std::vector<int> v(invalidIndices.begin() + 1, invalidIndices.end());
node->insertInvertedMatrix(v, matrix, shards, firstIndex + 1);
} else {
node->m_matrix = matrix;
}
}