-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dian.py
380 lines (314 loc) · 14.9 KB
/
train_dian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import argparse
import glob
import os
import random
import socket
import time
from datetime import datetime
import math
import numpy as np
import torch.optim.lr_scheduler as lr_scheduler
# PyTorch includes
import torch
import torch.optim as optim
# Tensorboard include
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torchvision import transforms
# Dataloaders includes
from dataloaders import tn3k, tg3k, tatn, tn3k_point
from dataloaders import custom_transforms_2 as trforms
from dataloaders import utils
from our_model.BPATUNet_all import BPATUNet
from utils import soft_dice
#zhi biao
from dataloaders.utils import get_dice
from dataloaders.utils import cal_HD_2
import torch.nn.functional as F
def focal_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
alpha: float = 0.6, #0.8
gamma: float = 2,
reduction: str = "mean",
) -> torch.Tensor:
p = inputs
ce_loss = F.binary_cross_entropy(inputs, targets, reduction="mean")
p_t = p * targets + (1 - p) * (1 - targets)
loss = ce_loss * ((1 - p_t)**gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
if reduction == "mean":
loss = loss.mean()
elif reduction == "sum":
loss = loss.sum()
return loss
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('-gpu', type=str, default='0')
## Model settings
parser.add_argument('-model_name', type=str,
default='BPAT-UNet') # unet, trfe, trfe1, trfe2, mtnet, segnet, deeplab-resnet50, fcn
parser.add_argument('-criterion', type=str, default='Dice')
parser.add_argument('-pretrain', type=str, default='None') # THYROID
parser.add_argument('-num_classes', type=int, default=1)
parser.add_argument('-input_size', type=int, default=256)#segformer256
parser.add_argument('-output_stride', type=int, default=16)
## Train settings
parser.add_argument('-dataset', type=str, default='TN3K_point') # TN3K, TG3K, TATN
parser.add_argument('-fold', type=str, default='0')
parser.add_argument('-batch_size', type=int, default=16)
parser.add_argument('-nepochs', type=int, default=150)
parser.add_argument('-resume_epoch', type=int, default=0)
## Optimizer settings
parser.add_argument('-naver_grad', type=str, default=1)
parser.add_argument('-lr', type=float, default=1e-4)
parser.add_argument('-momentum', type=float, default=0.9)
parser.add_argument('-update_lr_every', type=int, default=10)
parser.add_argument('-weight_decay', type=float, default=5e-4)
parser.add_argument("--amp", default=True, type=bool,
help="Use torch.cuda.amp for mixed precision training")
parser.add_argument("--warm-up-epochs", default=5, type=int)
## Visualization settings
parser.add_argument('-save_every', type=int, default=10)
parser.add_argument('-log_every', type=int, default=40)
parser.add_argument('-load_path', type=str, default='')
parser.add_argument('-run_id', type=int, default=-1)
parser.add_argument('-use_eval', type=int, default=1)
parser.add_argument('-use_test', type=int, default=1)
return parser.parse_args()
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(1234)
def main(args):
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
if args.resume_epoch != 0:
runs = sorted(glob.glob(os.path.join(save_dir_root, 'run', 'run_*')))
run_id = int(runs[-1].split('_')[-1]) if runs else 0
else:
runs = sorted(glob.glob(os.path.join(save_dir_root, 'run', 'run_*')))
run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0
if args.run_id >= 0:
run_id = args.run_id
save_dir = os.path.join(save_dir_root, 'run', 'run_' + str(run_id))
log_dir = os.path.join(save_dir, datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname())
writer = SummaryWriter(log_dir=log_dir)
batch_size = args.batch_size
if 'BPAT-UNet' in args.model_name:
net = BPATUNet(n_classes=1)
else:
raise NotImplementedError
if args.resume_epoch == 0:
print('Training ' + args.model_name + ' from scratch...')
else:
load_path = os.path.join(save_dir, args.model_name + '_epoch-' + str(args.resume_epoch) + '.pth')
print('Initializing weights from: {}...'.format(load_path))
net.load_state_dict(torch.load(load_path))
if args.pretrain == 'THYROID':
net.load_state_dict(torch.load('/home/jiang/ccj_dl/code/TRFE-Net_ori/quanzhong_2/unet_3_3_best.pth', map_location=lambda storage, loc: storage))
print('loading pretrain model......')
torch.cuda.set_device(device=0)
net.cuda()
# optimizer = optim.SGD(
# net.parameters(),
# lr=args.lr,
# momentum=args.momentum
# )
params_to_optimize = [p for p in net.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(
params_to_optimize,
lr=args.lr,
weight_decay=0.0001)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
warm_up_cosine_lr = lambda epoch: epoch / args.warm_up_epochs if epoch <= args.warm_up_epochs else 0.5 * (
math.cos((epoch - args.warm_up_epochs) / (args.nepochs - args.warm_up_epochs) * math.pi) + 1)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=warm_up_cosine_lr)
if args.criterion == 'Dice':
criterion = soft_dice
else:
raise NotImplementedError
composed_transforms_tr = transforms.Compose([
trforms.FixedResize(size=(args.input_size, args.input_size)),
trforms.RandomHorizontalFlip(),
trforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
trforms.ToTensor()])
composed_transforms_ts = transforms.Compose([
trforms.FixedResize(size=(args.input_size, args.input_size)),
trforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
trforms.ToTensor()])
if args.dataset == 'TN3K':
train_data = tn3k.TN3K(mode='train', transform=composed_transforms_tr, fold=args.fold)
val_data = tn3k.TN3K(mode='val', transform=composed_transforms_ts, fold=args.fold)
elif args.dataset == 'TN3K_point':
train_data = tn3k_point.TN3K(mode='train', transform=composed_transforms_tr, fold=args.fold)
val_data = tn3k_point.TN3K(mode='val', transform=composed_transforms_ts, fold=args.fold)
trainloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=0)
testloader = DataLoader(val_data, batch_size=1, shuffle=False, num_workers=0)
num_iter_tr = len(trainloader)
num_iter_ts = len(testloader)
nitrs = args.resume_epoch * num_iter_tr
nsamples = args.resume_epoch * len(train_data)
print('nitrs: %d num_iter_tr: %d' % (nitrs, num_iter_tr))
print('nsamples: %d tot_num_samples: %d' % (nsamples, len(train_data)))
aveGrad = 0
global_step = 0
recent_losses = []
start_t = time.time()
best_f, cur_f = 0.0, 0.0
for epoch in range(args.resume_epoch, args.nepochs):
net.train()
epoch_losses = []
for ii, sample_batched in enumerate(trainloader):
if 'trfe' in args.model_name or args.model_name == 'mtnet':
nodules, glands = sample_batched
inputs_n, labels_n = nodules['image'].cuda(), nodules['label'].cuda()
inputs_g, labels_g = glands['image'].cuda(), glands['label'].cuda()
inputs = torch.cat([inputs_n[0].unsqueeze(0), inputs_g[0].unsqueeze(0)], dim=0)
for i in range(1, inputs_n.size()[0]):
inputs = torch.cat([inputs, inputs_n[i].unsqueeze(0)], dim=0)
inputs = torch.cat([inputs, inputs_g[i].unsqueeze(0)], dim=0)
global_step += inputs.data.shape[0]
nodule, thyroid = net.forward(inputs)
loss = 0
for i in range(inputs.size()[0]):
if i % 2 == 0:
loss += criterion(nodule[i], labels_n[int(i / 2)], size_average=False, batch_average=True)
else:
loss += 0.5 * criterion(thyroid[i], labels_g[int((i-1) / 2)], size_average=False, batch_average=True)
else:
inputs, labels = sample_batched['image'].cuda(), sample_batched['label'].cuda()
point = sample_batched['point'].cuda()
# point = point.cpu().numpy()
global_step += inputs.data.shape[0]
outputs, bian = net.forward(inputs)
# outputs_train = torch.sigmoid(outputs)
loss_1 = criterion(outputs, labels, size_average=False, batch_average=True)
# loss_2 = focal_loss(bian, point)
loss_2 = criterion(bian, point, size_average=False, batch_average=True)
loss = loss_1 + loss_2
outputs_train = torch.sigmoid(outputs)
bian_train = torch.sigmoid(bian)
bian_show = bian_train[0]
outputs_show = outputs_train[0]
writer.add_image('point', bian_show, ii)
writer.add_image('pre', outputs_show, ii)
trainloss = loss.item()
epoch_losses.append(trainloss)
if len(recent_losses) < args.log_every:
recent_losses.append(trainloss)
else:
recent_losses[nitrs % len(recent_losses)] = trainloss
# Backward the averaged gradient
#loss.backward()
aveGrad += 1
nitrs += 1
nsamples += args.batch_size
# Update the weights once in p['nAveGrad'] forward passes
# if aveGrad % args.naver_grad == 0:
# optimizer.step()
# optimizer.zero_grad()
# aveGrad = 0
optimizer.zero_grad()
if scaler is not None:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
scheduler.step()
if nitrs % args.log_every == 0:
meanloss = sum(recent_losses) / len(recent_losses)
print('epoch: %d ii: %d trainloss: %.2f timecost:%.2f secs' % (
epoch, ii, meanloss, time.time() - start_t))
writer.add_scalar('data/trainloss', meanloss, nsamples)
meanloss = sum(epoch_losses) / len(epoch_losses)
print('epoch: %d meanloss: %.2f' % (epoch, meanloss))
writer.add_scalar('data/epochloss', meanloss, nsamples)
if args.use_test == 1:
prec_lists = []
recall_lists = []
sum_testloss = 0.0
total_mae = 0.0
cnt = 0
count = 0
jac = 0
dsc = 0
HD = 0
HD_2 = 0
if args.use_eval == 1:
net.eval()
for ii, sample_batched in enumerate(testloader):
inputs, labels = sample_batched['image'].cuda(), sample_batched['label'].cuda()
point = sample_batched['point'].cuda()
with torch.no_grad():
if 'trfe' in args.model_name or args.model_name == 'mtnet':
outputs, _ = net.forward(inputs)
else:
outputs, bian = net.forward(inputs)
# outputs_val = torch.sigmoid(outputs)
bian_val = torch.sigmoid(bian)
loss_1 = criterion(outputs, labels, size_average=False, batch_average=True)
# loss_2 = focal_loss(bian, point)
loss_2 = criterion(bian_val, point, size_average=False, batch_average=True)
loss = loss_1 + loss_2
sum_testloss += loss.item()
predictions = torch.sigmoid(outputs)
# predictions = outputs_val
jac += utils.get_iou(predictions, labels)
count += 1
total_mae += utils.get_mae(predictions, labels) * predictions.size(0)
prec_list, recall_list = utils.get_prec_recall(predictions, labels)
prec_lists.extend(prec_list)
recall_lists.extend(recall_list)
cnt += predictions.size(0)
#dsc
dsc += get_dice(predictions, labels)
# HD += cal_HD(predictions, labels)
HD_2 += cal_HD_2(predictions, labels)
if ii % num_iter_ts == num_iter_ts - 1:
mmae = total_mae / cnt
mean_testloss = sum_testloss / num_iter_ts
mean_prec = sum(prec_lists) / len(prec_lists)
mean_recall = sum(recall_lists) / len(recall_lists)
fbeta = 1.3 * mean_prec * mean_recall / (0.3 * mean_prec + mean_recall)
jac = jac / count
dsc = dsc / count
HD = HD / count
HD_2 = HD_2 / count
print('Validation:')
print('epoch: %d, numImages: %d testloss: %.2f mmae: %.4f fbeta: %.4f jac: %.4f' % (
epoch, cnt, mean_testloss, mmae, fbeta, jac))
print('dsc: %.4f, HD_2: %.4f, prec: %.4f, recall: %.4f' % (dsc, HD_2, mean_prec, mean_recall))
writer.add_scalar('data/validloss', mean_testloss, nsamples)
writer.add_scalar('data/validmae', mmae, nsamples)
writer.add_scalar('data/validfbeta', fbeta, nsamples)
writer.add_scalar('data/validjac', jac, epoch)
writer.add_scalar('data/validdsc', dsc, epoch)
writer.add_scalar('data/validHD', HD, epoch)
writer.add_scalar('data/validHD_2', HD_2, epoch)
writer.add_scalar('data/validprec', mean_prec, epoch)
writer.add_scalar('data/validrecall', mean_recall, epoch)
# bian = bian[0]
# bian = bian.cpu().numpy()
# writer.add_image('point', bian[0], ii)
# ii += 1
cur_f = jac
if cur_f > best_f:
save_path = os.path.join(save_dir, args.model_name + '_best' + '.pth')
torch.save(net.state_dict(), save_path)
print("Save model at {}\n".format(save_path))
best_f = cur_f
if epoch % args.save_every == args.save_every - 1:
save_path = os.path.join(save_dir, args.model_name + '_epoch-' + str(epoch) + '.pth')
torch.save(net.state_dict(), save_path)
print("Save model at {}\n".format(save_path))
if __name__ == "__main__":
args = get_arguments()
main(args)