forked from pooler/cpuminer
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtitan_kernel.cu
302 lines (242 loc) · 11.9 KB
/
titan_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//
// Kernel that runs best on Kepler (Compute 3.5) devices
//
// NOTE: compile this .cu module for compute_35,sm_35 with --maxrregcount=64
//
#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>
#include <cuda.h>
#include "titan_kernel.h"
// forward references
__global__ void scrypt_core_kernel_spinlock_titanA(uint32_t *g_idata, int *mutex);
__global__ void scrypt_core_kernel_spinlock_titanB(uint32_t *g_odata, int *mutex);
// scratchbuf constants (pointers to scratch buffer for each work unit)
__constant__ uint32_t* c_V[1024];
TitanKernel::TitanKernel() : KernelInterface()
{
}
bool TitanKernel::bindtexture_1D(uint32_t *d_V, size_t size)
{
return true;
}
bool TitanKernel::bindtexture_2D(uint32_t *d_V, int width, int height, size_t pitch)
{
return true;
}
bool TitanKernel::unbindtexture_1D()
{
return true;
}
bool TitanKernel::unbindtexture_2D()
{
return true;
}
void TitanKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
{
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice));
}
bool TitanKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, int *mutex, bool interactive, bool benchmark, int texture_cache)
{
bool success = true;
// clear CUDA's error variable
cudaGetLastError();
// First phase: Sequential writes to scratchpad.
scrypt_core_kernel_spinlock_titanA<<< grid, threads, 0, stream >>>(d_idata, mutex);
// Optional millisecond sleep in between kernels
if (!benchmark && interactive) {
checkCudaErrors(MyStreamSynchronize(stream, 1, thr_id));
#ifdef WIN32
Sleep(1);
#else
usleep(1000);
#endif
}
// Second phase: Random read access from scratchpad.
scrypt_core_kernel_spinlock_titanB<<< grid, threads, 0, stream >>>(d_odata, mutex);
// catch any kernel launch failures
if (cudaPeekAtLastError() != cudaSuccess) success = false;
return success;
}
#define ROTL(a, b) __funnelshift_l( a, a, b );
static __device__ __forceinline__ void lock(int *mutex, int i)
{
while( atomicCAS( &mutex[i], 0, 1 ) != 0 );
}
static __device__ __forceinline__ void unlock(int *mutex, int i)
{
atomicExch( &mutex[i], 0 );
}
static __device__ __forceinline__ void xor_salsa8(uint32_t *B, const uint32_t *C)
{
uint32_t x0 = (B[ 0] ^= C[ 0]), x1 = (B[ 1] ^= C[ 1]), x2 = (B[ 2] ^= C[ 2]), x3 = (B[ 3] ^= C[ 3]);
uint32_t x4 = (B[ 4] ^= C[ 4]), x5 = (B[ 5] ^= C[ 5]), x6 = (B[ 6] ^= C[ 6]), x7 = (B[ 7] ^= C[ 7]);
uint32_t x8 = (B[ 8] ^= C[ 8]), x9 = (B[ 9] ^= C[ 9]), xa = (B[10] ^= C[10]), xb = (B[11] ^= C[11]);
uint32_t xc = (B[12] ^= C[12]), xd = (B[13] ^= C[13]), xe = (B[14] ^= C[14]), xf = (B[15] ^= C[15]);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18);
B[ 0] += x0; B[ 1] += x1; B[ 2] += x2; B[ 3] += x3; B[ 4] += x4; B[ 5] += x5; B[ 6] += x6; B[ 7] += x7;
B[ 8] += x8; B[ 9] += x9; B[10] += xa; B[11] += xb; B[12] += xc; B[13] += xd; B[14] += xe; B[15] += xf;
}
static __device__ __forceinline__ uint2& operator^=(uint2& left, const uint2& right)
{
left.x ^= right.x;
left.y ^= right.y;
return left;
}
////////////////////////////////////////////////////////////////////////////////
//! Scrypt core kernel with spinlock guards around a smaller shared memory
//! Version for Geforce Titan, low register count (<=64), low shared mem use.
//! @param g_idata input data in global memory
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void
scrypt_core_kernel_spinlock_titanA(uint32_t *g_idata, int *mutex)
{
volatile __shared__ uint32_t X[WU_PER_WARP][16+2]; // +2 to reduce bank conflicts
// while maintaining alignment
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
int WARPS_PER_BLOCK = blockDim.x / warpSize;
// add block specific offsets
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_idata += 32 * offset;
uint32_t* V = (uint32_t*)c_V[offset/WU_PER_WARP];
// variables supporting the large memory transaction magic
volatile unsigned int Y = warpThread/8;
volatile unsigned int Z = 2*(warpThread%8);
// registers to store an entire work unit
uint32_t B[16], C[16];
if (warpThread == 0) lock(mutex, blockIdx.x);
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&V[SCRATCH*(wu+Y)+Z])) = *((uint2*)(&X[wu+Y][Z])) = *((uint2*)(&g_idata[32*(wu+Y)+Z]));
#pragma unroll 16
for (int idx=0; idx < 16; idx++) B[idx] = X[warpThread][idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&V[SCRATCH*(wu+Y)+16+Z])) = *((uint2*)(&X[wu+Y][Z])) = *((uint2*)(&g_idata[32*(wu+Y)+16+Z]));
#pragma unroll 16
for (int idx=0; idx < 16; idx++) C[idx] = X[warpThread][idx];
for (int i = 1; i < 1024; i++) {
if (warpThread == 0) unlock(mutex, blockIdx.x);
xor_salsa8(B, C); xor_salsa8(C, B);
if (warpThread == 0) lock(mutex, blockIdx.x);
#pragma unroll 16
for (int idx=0; idx < 16; ++idx) X[warpThread][idx] = B[idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&V[SCRATCH*(wu+Y) + i*32 + Z])) = *((uint2*)(&X[wu+Y][Z]));
#pragma unroll 16
for (int idx=0; idx < 16; ++idx) X[warpThread][idx] = C[idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&V[SCRATCH*(wu+Y) + i*32 + 16 + Z])) = *((uint2*)(&X[wu+Y][Z]));
}
if (warpThread == 0) unlock(mutex, blockIdx.x);
}
__global__ void
scrypt_core_kernel_spinlock_titanB(uint32_t *g_odata, int *mutex)
{
volatile __shared__ uint32_t X[WU_PER_WARP][16+2]; // +2 to reduce bank conflicts
// while maintaining alignment
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
int WARPS_PER_BLOCK = blockDim.x / warpSize;
// add block specific offsets
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_odata += 32 * offset;
const uint32_t* __restrict__ V = (const uint32_t*)c_V[offset/WU_PER_WARP];
// variables supporting the large memory transaction magic
volatile unsigned int Y = warpThread/8;
volatile unsigned int Z = 2*(warpThread%8);
// registers to store an entire work unit
uint32_t B[16], C[16];
if (warpThread == 0) lock(mutex, blockIdx.x);
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&X[wu+Y][Z])) = *((uint2*)(&V[SCRATCH*(wu+Y) + 1023*32 + Z]));
#pragma unroll 16
for (int idx=0; idx < 16; idx++) B[idx] = X[warpThread][idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&X[wu+Y][Z])) = *((uint2*)(&V[SCRATCH*(wu+Y) + 1023*32 + 16+Z]));
#pragma unroll 16
for (int idx=0; idx < 16; idx++) C[idx] = X[warpThread][idx];
if (warpThread == 0) unlock(mutex, blockIdx.x);
xor_salsa8(B, C); xor_salsa8(C, B);
if (warpThread == 0) lock(mutex, blockIdx.x);
for (int i = 0; i < 1024; i++) {
X[warpThread][16] = C[0];
#pragma unroll 16
for (int idx=0; idx < 16; ++idx) X[warpThread][idx] = B[idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&X[wu+Y][Z])) ^= *((uint2*)(&V[SCRATCH*(wu+Y) + 32*(X[wu+Y][16] & 1023) + Z]));
#pragma unroll 16
for (int idx=0; idx < 16; idx++) B[idx] = X[warpThread][idx];
#pragma unroll 16
for (int idx=0; idx < 16; ++idx) X[warpThread][idx] = C[idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&X[wu+Y][Z])) ^= *((uint2*)(&V[SCRATCH*(wu+Y) + 32*(X[wu+Y][16] & 1023) + 16 + Z]));
#pragma unroll 16
for (int idx=0; idx < 16; idx++) C[idx] = X[warpThread][idx];
if (warpThread == 0) unlock(mutex, blockIdx.x);
xor_salsa8(B, C); xor_salsa8(C, B);
if (warpThread == 0) lock(mutex, blockIdx.x);
}
#pragma unroll 16
for (int idx=0; idx < 16; ++idx) X[warpThread][idx] = B[idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&g_odata[32*(wu+Y)+Z])) = *((uint2*)(&X[wu+Y][Z]));
#pragma unroll 16
for (int idx=0; idx < 16; ++idx) X[warpThread][idx] = C[idx];
#pragma unroll 8
for (int wu=0; wu < 32; wu+=4)
*((uint2*)(&g_odata[32*(wu+Y)+16+Z])) = *((uint2*)(&X[wu+Y][Z]));
if (warpThread == 0) unlock(mutex, blockIdx.x);
}