-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaboost.R
76 lines (64 loc) · 2.01 KB
/
adaboost.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
adaboostr <- function(models)
{
res = list(models=models, modelsBeta=rep(0,length(models)), modelsLength=0)
res <- list2env(res)
class(res) <- 'adaboostr'
res
}
clone.adaboostr <- function(adaboostr)
{
models <- sapply(adaboostr$models, function(m) clone(m))
c <- adaboostr(models)
c
}
reset.adaboostr <- function(adaboostr)
{
for (mlp in adaboostr$models)
reset(mlp)
modelsBeta=rep(0,length(adaboostr$models))
assign('modelsBeta', modelsBeta, envir=adaboostr)
}
train.adaboostr <- function(adaboostr, x, y)
{
reset(adaboostr)
# probability of each training instance
p <- rep(1/nrow(x), nrow(x))
index <- 1:nrow(x)
modelsBeta <- adaboostr$modelsBeta
curModel <- 1
diffs <- array(1,c(length(adaboostr$models),nrow(x)))
for (model in adaboostr$models)
{
tset <- sample(index, nrow(x), TRUE, p)
yhat <- sapply(tset, function(j) train(model,x[j,],y[j]))
diff <- abs(y[tset] - yhat)
L <- diff / max(diff)
lhat <- sum(L*p[tset])
modelsBeta[curModel] <- lhat / (1 - lhat)
p[tset] <- p[tset] * (modelsBeta[curModel])^(1 - L)
p <- p/sum(p)
if (lhat <= 0.5)
break
curModel <- curModel + 1
}
assign('modelsLength', curModel, envir=adaboostr)
assign('p', p, envir=adaboostr)
assign('modelsBeta', modelsBeta, envir=adaboostr)
}
predict.adaboostr <- function(adaboostr, x)
{
# para compor as hipoteses dos especialistas,
# eu devo ordenar suas predicoes de forma crescente
# e pegar a primeira predicao cuja soma dos log(1/beta) das primeiras
# predicoes ate ele seja maior que o log(1/beta) medio
threshold <- mean(log(1/adaboostr$modelsBeta[1:adaboostr$modelsLength]))
ys <- sapply(1:adaboostr$modelsLength, function(i) predict(adaboostr$models[[i]],x))
invBetas <- log(1/adaboostr$modelsBeta[sort.list(ys)])
res <- 0
for (i in 1:length(ys)) {
res <- ys[i]
if (sum(invBetas[1:i]) > threshold)
break;
}
res
}