-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHashCoFi.py
269 lines (203 loc) · 8.35 KB
/
HashCoFi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python
import sys
import random
import mmhash
class HashCoFi:
""" Class that performs "Collaborative Filtering on a Budget".
Usage:
1. Initialize an instance, hcf = HashCoFi()
2. Set parameters if desired, e.g., hcf.t0 = 1000000000
3. Run on input file, hcf.updateMatrixFromFile("datafile.txt")
4. Write out weight vectors, hcf.writeWeightsFoFile("weight_output.txt")
5. Iterate again, hcf.singlePass(). Each invocation
passes over the dataset once
6. Iterate 10 times over the data, hcf.nPasses(10). Do this until algo
converges.
7. Check if the algorithm has converged, hcf.checkConverge(10)
Iterates through the first 10 points in the input file and computes
the mean absolute parameter change
8. Get prediction, hcf.predict('user', 'item')"""
def __init__(self):
self.infile = None
self.outfile = None
# Learning rate. At each instance, take a step in the direction of the
# gradient of the loss, proportional to 1/(t0 + n), where n is the
# number of observations seen so far.
self.t0 = 1000000
# Regularization parameter
self.lam = .05
# Number of latent factors
self.nfactors = 128
self.compressed = HashMatrix(18, 128)
self.loss = SquaredLoss()
def updateMatrixFromFile(self, infile):
self.infile = infile
self.computeMatrix()
def writeWeightsToFile(self, outfile):
self.outfile = outfile
self.writeWeights()
def singlePass(self):
# Make a single pass over the data in self.infile
self.computeMatrix()
def nPasses(self, n):
# Make n passes over the data in self.infile
for i in range(0, n):
self.computeMatrix()
def predict(self, user, item):
return self.compressed.decompressMatrixFactorization(
0, str(user), str(item), range(0, self.nfactors)
)
def computeMatrix(self):
trainFile = open(self.infile, 'r')
for line in trainFile:
eta = 1./pow(self.t0, .5)
self.t0 = self.t0 + 1
splitLine = line.split(',')
user = splitLine[0]
item = splitLine[1]
score = splitLine[2]
F_ik = self.compressed.decompressMatrixFactorization(0, user, item,
range(0, self.nfactors))
gamma = eta * self.loss.FirstDerivative(F_ik, float(score))
mu = 1. - eta * self.lam
self.compressed.updateWeightVectors(gamma, mu, user, item,
self.nfactors)
trainFile.close()
def writeWeights(self):
outFile = open(self.outfile, 'w')
for i in range(0, self.compressed.weightLength):
outLine = []
outLine.append(str(i))
outLine.append(str(self.compressed.userWeights[i]))
outLine.append(str(self.compressed.itemWeights[i]))
outFile.write(','.join(outLine) + '\n')
outFile.close()
def checkConvergence(self, n=10):
trainFile = open(self.infile, 'r')
absChange = 0.
for i in range(0, n):
eta = 1./pow(self.t0, .5)
splitLine = trainFile.readline().split(',')
user = splitLine[0]
item = splitLine[1]
score = splitLine[2]
F_ik = self.compressed.decompressMatrixFactorization(
0, user, item, range(0, self.nfactors)
)
gamma = eta * self.loss.FirstDerivative(F_ik, float(score))
mu = 1. - eta * self.lam
absChange = absChange + self.compressed.updateWeightVectors(
gamma, mu, user, item, self.nfactors
)
return absChange/float(n)
def reset(self):
self.compressed.resetWeights()
def set_t0(self, new_t):
self.t0 = new_t
def set_lambda(self, new_lam):
self.lam = new_lam
class HashMatrix:
def __init__(self, nbits, nfactors):
self.weightLength = 1 << nbits
self.nbits = nbits
self.nfactors = nfactors
self.userWeights = self.getRandomWeights()
self.itemWeights = self.getRandomWeights()
def hash1(self, a):
return mmhash.get_hash(a) % self.weightLength
def hash2(self, a):
return mmhash.get_hash(str(hash(str(a)) % 2**31)) % self.weightLength
def rademacher1(self, item):
hashedval = self.hash1(item)
if hashedval % 2 == 0:
return 1
else:
return 0
def rademacher2(self, item):
hashedval = self.hash2(item)
if hashedval % 2 == 0:
return 1
else:
return 0
def decompressMatrixFactorization(self, startVal, user, item, factors):
if len(factors) < 1:
return startVal
j = factors[0]
userFactorString = user + ":" + str(j)
userIndex = self.hash1(userFactorString)
userSigma = self.rademacher1(userFactorString)
userWeight = self.userWeights[userIndex]
itemFactorString = item + ":" + str(j)
itemIndex = self.hash2(itemFactorString)
itemSigma = self.rademacher2(itemFactorString)
itemWeight = self.itemWeights[itemIndex]
factorSum = startVal + userSigma*itemSigma*userWeight*itemWeight
return self.decompressMatrixFactorization(factorSum, user, item,
factors[1:])
def updateWeightVectors(self, gamma, mu, user, item, numFactors):
updateAmt = 0.
for j in range(0, numFactors):
userFactorString = user + ":" + str(j)
itemFactorString = item + ":" + str(j)
userIndex = self.hash1(userFactorString)
itemIndex = self.hash2(itemFactorString)
userSigma = self.rademacher1(userFactorString)
itemSigma = self.rademacher2(itemFactorString)
oldUserWeight = self.userWeights[userIndex]
oldItemWeight = self.itemWeights[itemIndex]
self.userWeights[userIndex] = self.getNewCoefficient(
gamma, mu, oldUserWeight, oldItemWeight, userSigma, itemSigma
)
self.itemWeights[itemIndex] = self.getNewCoefficient(
gamma, mu, oldItemWeight, oldUserWeight, itemSigma, userSigma
)
updateAmt = updateAmt + abs(oldUserWeight - self.userWeights[userIndex])
updateAmt = updateAmt + abs(oldItemWeight - self.itemWeights[itemIndex])
return updateAmt
def getNewCoefficient(self, gamma, mu, val1, val2, sig1, sig2):
return mu*val1 - gamma*sig1*sig2*val2
def resetWeights(self):
self.userWeights = self.getRandomWeights()
self.itemWeights = self.getRandomWeights()
def getRandomWeights(self):
return [(random.random()-.5)/1000. for x in range(0, self.weightLength)]
class SquaredLoss:
def __init__(self):
pass
def FirstDerivative(self, prediction, actual):
return prediction - actual
class EpsInsensLoss:
def __init__(self, eps = 1, multiplier = 1):
self.eps = abs(eps)
self.m = multiplier
def FirstDerivative(self, prediction, actual):
if abs(prediction - actual) > self.eps:
if (prediction - actual) > 0:
return 1. * self.m
else:
return -1. * self.m
else:
return 0.
class SmoothedEpsInsensLoss:
def __init__(self, eps):
self.eps = abs(eps)
def FirstDerivative(self, prediction, actual):
firstDenom = 1. + pow(math.e, eps - actual + prediction)
secondDenom = 1. + pow(math.e, eps - prediction + actual)
return (1./firstDenom) - (1./secondDenom)
class HubersRobustLoss:
def __init__(self, sigma = 1, multiplier = 1):
self.sigma = abs(sigma)
self.m = multiplier
def FirstDerivative(self, prediction, actual):
if abs(prediction - actual) <= sigma:
return (1./sigma) * (prediction - actual) * self.m
else:
if (prediction - actual) > 0:
return 1 * self.m
else:
return -1 * self.m
if __name__ == "__main__":
infile = sys.argv[1]
outfile = sys.argv[2]
hcf = HashCoFi(infile, outfile)